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Abstract: Nowadays, GPS (global positioning system) receivers are aided by INS (inertial navigation systems) to achieve more 
precision and stability in land-vehicular navigation. KF (Kalman filter) is a conventional method which is used for the navigation 
system to estimate the navigational parameters, when INS measurements are fused with GPS data. However, new generation of INS, 
which relies on MEMS (micro-electro-mechanical systems) based low-cost IMUs (inertial measurement units) for the land navigation 
systems, decreases the accuracy and the robustness of navigation system due to their inherent errors. This paper provides a new method 
for fusing the low-cost IMU and GPS measurements. The proposed method is based on KF aided by AFIS (adaptive fuzzy inference 
systems) as a promising solution to overcome the mentioned problems. The results of this study show the efficiency of the proposed 
method to reduce the navigation system errors in comparison with KF alone.  

 
Key words: GPS/INS integration, KF, AFIS. 
 

1. Introduction 

The last two decades have shown an increasing trend 

in the use of location based services in automotive 

vehicles applications including car tracking for theft 

protection, fleet management services, automated car 

navigation and emergency assistance. Most of these 

applications rely entirely on a GPS (global positioning 

system) receiver to provide ubiquitous navigational 

solution of the monitored vehicle. In order to provide 

such a reliable solution, GPS requires an optimal 

operating condition that is a clean line of sight to at 

least four satellites. Unfortunately, this condition 

cannot be fulfilled at all times, especially when driving 

in severe urban environment where buildings, concrete 

structures, high passes and tunnels may attenuate, 

block or reflect incoming signals resulting in a poorly 

accurate navigation solution. Indeed, multipath is one 

of the main sources of positioning errors for standalone 
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GPS receivers used in severe urban environments. 

Multipath error on pseudo-range measurements can 

reach hundreds of meters [1], thus introducing 

significant errors in position computation.  

To reduce the impact of multipath, GPS is often 

combined to an INS (inertial navigation systems), 

which is a self-contained dead reckoning system based 

on the integration of linear accelerations and angular 

rates. The procedure, in which raw inertial 

measurements are processed to compute the position, 

the velocity and the attitude of a mobile, is referred as 

the INS mechanization process. Unfortunately, the 

low-cost standalone INS positioning tend to diverge 

over time due to the significant inherent errors 

contained on low-cost MEMS 

(micro-electro-mechanical systems) based inertial 

sensors. 

To overcome shortcomings of standalone GPS or 

INS, both systems can be coupled together to form an 

integrated navigation system. The INS/GPS integrated 

systems exploit beneficial features of each individual 

system (i.e., short term precision of INS, and long-term 
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stability of GPS), thus providing precise and ubiquitous 

navigation. The INS/GPS integration is a mature topic 

that is widely covered in the literature when it comes to 

high-end systems [2-5]. However, the recent studies 

reported several shortcomings related to the use of 

low-cost MEMS based IMUs (inertial measurement 

units), particularly with regard to the use of linearized 

error models. 

Various kinds of KF (Kalman filter) have been 

extensively utilized for the integration of GPS with 

INS, and they can determine the optimal estimation of 

the system with minimum errors [6-9]. KF needs an 

adequate knowledge on the dynamic process of the 

system and measurement model. Another problem is 

that the precision of MEMS-based IMUs is 

significantly decreased by their drift and bias errors. 

This problem ruins the system performance, when 

employing a KF in car navigation [10]. Moreover, the 

critical problem of the KF is the big degree of 

covariance divergence due to its modeling error [11]. 

There are two different solutions to solve the 

covariance divergence of KF: The first one is using the 

un-modeled states in KF. However, this solution 

increases the computational complexity of the   

system [11]. The second one is usage of the process 

noise to develop the confidence, which can intercept 

the KF to dismiss new values for estimating the state 

vector [10, 12, 13]. This paper uses Mamdani AFIS 

(adaptive fuzzy inference system) based on the 

employing the process noise. The proposed model can 

beused for tuning phase of the KF by tracking the 

covariance values. 

The paper is organized as follows: Section 2 presents 

the GPS/INS integration methods; Section 3 describes 

the proposed model to fuse the INS and GPS 

measurements in deeply; The results are provided in 

Section 4, whereas Section 5 draws the conclusion and 

future works. 

2. GPS/INS Integration Methods 

2.1 GPS/INS Coupling 

There are different structures for the GPS/INS 

integration, namely, uncoupled, loosely coupled, 

tightly coupled and ultra-tightly coupled. Table 1 

summarizes the advantages and the disadvantages of 

them. It is common to integrate the INS and GPS 

through loosely coupled structure. Because it not only 

maintains independency of stand-alone GPS and INS 

solutions, but it can also provide more robustness for 

the navigation solution [14]. The loosely coupled 

integration is generally preferable in the GPS/INS 

integration as being composed of three distinct entities, 

which are the stand-alone GPS solution, the 

stand-alone INS solution and the GPS/INS coupled 

solution. This architecture, which is presented in Fig. 1, 

is shared by several authors [15-17].  

In general, the KF filters are recognized as the most 

conventional method to estimate the navigation 

systems (Fig. 1) [18]. The error model in the dynamical 

model includes state errors of position, velocity and 

attitude, augmented by sensor state errors [19]. 

2.2 KF (Kalman Filters)  

An optimal estimator is a state estimator whose gain 

is dynamically calculated to optimize a certain system  
 

Table 1  A brief summary of commonly used INS/GPS integration architectures [14].  

Type Advantage Disadvantage 

Un-coupled Simplicity of algorithm  Instability in GPS outages 

Loosely coupled  
 Separate INS and GPS KF; 
 Small size of individual KF; 
 Less computation complexity 

 Sub-optimal performance; 
 Min four satellite requirement 

Tightly coupled  
 Optimal accuracy; 
 Max 4 satellites requirement 

 Large error size state model;  
 More complex processing 

Ultra-tightly coupled 
 Reduce GPS dynamic stress; 
 Less jamming errors 

Special hardware requirement 

 



Low-Cost GPS/INS Integrated Land-Vehicular Navigation System for  
Harsh Environments Using Hybrid Mamdani AFIS/KF Model 

 

25

GPS receiver GPS Filter

GPS/INS   
Filter

INS INS Filter

Aiding

Position 

Velocity

Position 

Velocity

Acc bias/Gyr drift corrections

Position
Velocity
Attitude

 
Fig. 1  Loosely coupled GPS/INS integration.  
 

performance criteria. One of the widely used 

optimization criteria is the mean square error of the 

estimate. The optimal estimator based on this 

optimization criterion is called the Kalman filter. KF 

has been accepted as a conventional method to estimate 

the GPS/INS integration. The derivation of an error 

model which are applied in the KF can start with the 

construction of full scale true error models [18, 19]. 

First, a definition of priori error in the estimated of 

the state vector and the associated covariance matrix 

can be presented with: 

݁௞
ି ൌ ௞ݔ െ ො௞ݔ

ି             (1) 

௞ܲ
ି ൌ ௞݁ൣܧ

ି݁௞
ି்൧ ൌ ܧ ቂ൫ݔ௞ െ ො௞ݔ

ି൯൫ݔ௞ െ ො௞ݔ
ି൯

்
ቃ  (2) 

where, ݁௞
ି is priori error vector and ௞ܲ

ି is priori error 

covariance matrix. 

According to the equations of state estimator present 

in the previous section, the estimated a posteriori state 

vector can be obtained by a linear combination of the 

vector of noisy measurements and estimated as a priori: 

ො௞ݔ
ା ൌ ො௞ݔ

ି ൅ ௞ݖ௞൫ܭ െ ො௞ݔ௞ܪ
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The error covariance matrix associated with this 

estimate posteriori can be calculated from the 

following expression: 

௞ܲ
ା ൌ ௞݁ൣܧ

ା݁௞
ା்൧ ൌ ܧ ቂ൫ݔ௞ െ ො௞ݔ

ା൯൫ݔ௞ െ ො௞ݔ
ା൯

்
ቃ  (4) 

௞ܲ
ା ൌ ܧ ൤ቀݔ௞ െ ො௞ݔ

ି ൅ ௞ݖ௞൫ܭ െ ො௞ݔ௞ܪ
ି൯ቁ ቀݔ௞ െ ො௞ݔ

ି ൅

௞ݖ௞൫ܭ െ ො௞ݔ௞ܪ
ି൯ቁ

்
ቃ             (5) 

௞ܲ
ା ൌ ሺܫ െ ௞ሻܪ௞ܭ ௞ܲ

ିሺܫ െ ௞ሻ்ܪ௞ܭ ൅ ௞ܭ௞ܴ௞ܭ
்  (6) 

The diagonal of the error covariance matrix contains 

the variance of the estimation error of all system states. 

Thus, the trace of this matrix represents the sum of the 

variance and it is thereby an unbiased indicator of the 

mean square error of the estimate. The gain of the 

Kalman filter, commonly called the Kalman gain, can 

be selected to minimize the trace of the matrix ௞ܲ. This 

can be achieved by the following equality: 

݀ሺ݁ܿܽݎݐ ௞ܲሻ

௞ܭ݀
ൌ 0 ൌ െ2ሺܪ௞ ௞ܲ

ିሻ் ൅ 

௞ܪ௞ሺܭ2 ௞ܲ
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Substituting ܭ௞  within Eq. (6) by the expression 

given by Eq. (8), it is possible to simplify the 

expression of the matrix ௞ܲ
ା as: 

௞ܲ
ା ൌ ሺܫ െ ௞ሻܪ௞ܭ ௞ܲ

ି           (9) 

After repeating the previously presented equations 

of the state estimator, spreading the error covariance 

matrix, and calculating the Kalman gain, the Kalman 

filter algorithm can be summarized by the equations 

presented in Table 2. A system level block diagram of 

the discrete KF is shown in Fig. 2.  

The time update equations can be calculated thought 

the estimation equations, while the measurement 

update equations can be presented thought the 

correction equations. Therefore, the final estimation 

algorithm resembles an estimation-correction 

algorithm to solve the numerical problems as shown in 

Fig. 3. 

The multiple dynamic models used in navigation are  
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Table 2  Description of KF variables.  

Parameter Description 

Φ State transition matrix of a discrete linear 

ܺ State vector of a linear dynamic system 
෠ܺሺെሻ Prediction or a priori value of the estimated state vector of a linear dynamic system 
෠ܺሺ൅ሻ Corrected or a posteriori value of the estimated state vector of a dynamic system 

ܼ Measurement vector or observation vector 

 Kalman gain matrix ܭ

 ܪ
Measurement sensitivity matrix or observation matrix which defines the linear relationship between the state of the 
dynamic systems and measurements that can be made  

ܲሺെሻ Predicted or priori value of estimated covariance of state estimation uncertainty in matrix form 

ܲሺ൅ሻ Corrected or posteriori value of the estimated covariance of state estimation uncertainty in matrix form 

 Process noise ݓ

 Measurement noise ߟ
 

kK

kH

kZ

)(ky

)(ˆ kx
1ˆ kx

kx̂

1 k


 



 
Fig. 2  Discrete-time KF diagram.  
 

 
Fig. 3  Recursive process of prediction.  
 

non-linear, and, therefore, they can not be directly 

expressed in terms of the general form. The 

linearization of these systems around an optimal state 

vector is first requirement, so they can be expressed 

with using this standard form. First, it is defined a 

non-linear system such that: 

ሶݔ ൌ ݂൫ݔ൯ ൅ ܩ ·  ௣          (10)ߟ

ݖ ൌ ݄൫ݔ൯ ൅  ௠          (11)ߟ

where, ݂  and ݄  are non-linear functions. It is 

assumed that an optimal state vector כݔ is known and 

it is defined as follows: 

כݔ ൌ ݔ െ  (12)              ݔߜ

where, ݔ is optimal state trajectory and ݔߜ is state of 

error vector. Thus, Eqs. (8) and (9) can be rewritten as a 

function of the optimal state vector and the error state 

vector as: 

Unit 
delay 

Φk − 1 

Time update or predict Measurement update or 
correct 

New measurement 

System model 
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ሶݔ כ ൅ ሶݔߜ ൌ ݂൫כݔ ൅ ൯ݔߜ ൅ ܩ ·  ௣       (13)ߟ

ݖ ൌ ݄൫כݔ ൅ ൯ݔߜ ൅  ௠          (14)ߟ

It is assumed that the status error vector can 

beneglected, and it is possible to approximate the 

non-linear functions f and h using a Taylor series. 

Considering only the terms of first order, the result is: 

ሶݔ כ ൅ ሶݔߜ ൎ ݂൫כݔ൯ ൅
డ௙൫௫൯
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ฬ
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ݖ ൎ ݄൫כݔ൯ ൅
డ௛൫௫൯

డ௫
ฬ
௫ୀ௫כ

ݔߜ ൅  ௠       (16)ߟ

By selecting an optimal state vector as equality 

ሶݔ כ ൌ ݂൫כݔ൯, the following linearized general form is 

obtained: 
ሶݔߜ ൌ ܨ · ݔߜ ൅ ܩ ·  ௣          (17)ߟ

ݖߜ ൌ ܪ · ݔߜ ൅  ௠            (18)ߟ

where: 
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ܪ ൌ
డ௛ሺ௫ሻ
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ฬ
௫ୀ௫כ
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2.3 AFISs (Adaptive Fuzzy Inference Systems) 

AFISs (adaptive fuzzy inference systems) is a 

rule-based expert method for its ability to mimic 

human thinking and the linguistic concepts rather than 

the typical logic systems [20]. The advantage of the 

AFIS appears when the algorithm of the estimation 

states becomes unstable due to the system high 

complexity [21].  

AFIS architecture includes three parts: fuzzification, 

fuzzy inference and defuzzification. The first part is 

responsible to convert the crisps input values to the 

fuzzy values, the second part formulates the mapping 

from the given inputs to an output, and the third part 

converts the fuzzy operation into the new crisp values. 

The AFIS are able to convert the inaccurate data to 

normalized fuzzy crisps which are represented by MF 

(membership functions) and the confidence-rate of the 

inputs. AFIS are capable to choose an optimal MF 

under certain convenient criteria meaningful to a 

specific application [22, 23]. 

Mamdani and Sugeno are the two practical AFIS 

types which were used in several studies [24-27]. The 

main difference between these two fuzzy algorithms is 

based on the process complexity and the rule definition. 

Another important aspect to take into consideration is 

that Mamdani needs more processing time than Sugeno. 

Sugeno type also provides less flexibility in the system 

design compared to the Mamdani type. In general, 

Mamdani type is more efficient and accurate than 

Sugeno type [24, 25]. All those reasons have motivated 

us to use the Mamdani type (Fig. 4) to design the 

fuzzy-part of the proposed GPS/INS integration model. 

3. Proposed AFIS/KF System 

This paper employs IAE (innovation adaptive 

estimation) concept in the fuzzy part of the proposed 

model [23, 28, 29]. The dynamic characteristics of the 

vehicle motion are based on the KF process. The AFIS 

can be exploited to increase the accuracy and the KF. 

Additionally, AFIS part can prevent the divergence in 

the tuning phase of KF. Hence, Mamdani AFIS is used 

as a structure for implementing the tuning of the 

nonlinear error model. Fig. 5 shows the proposed 

hybrid AFIS-KF model. 
 

INPUT MFs OUPUT MFs

MAMDANI 
TYPE

 
Fig. 4  General overview of AFIS using Mamdani type.  
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Fig. 5  The proposed hybrid Mamdani AFIS-KF model in 
navigation system.  
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Fig. 6  The proposed Mamdani AFIS part of the hybrid AFIS-KF in navigation system.  
 

The proposed AFIS model is based on the 

covariance matrix for the input of the Mamdani AFIS, 

as well as the difference of the actual and the estimated 

covariance matrices. Fig. 6 presents the proposed AFIS 

overview that is used in this paper. The estimated 

covariance matrix based on the innovation process is 

computed partly in the KF by: 
መܵ௞ ൌ ௞ܲ௞തܪ  ௞ܪ

் ൅  ܴ௞         (22) 

where, መܵ௞ and ܪ௞ represent the estimated covariance 

and the design matrices, respectively. ܲ௞ത  and ܴ௞ are 

previous covariance update and the measurement noise 

covariance matrices. The actual covariance matrix (ߛ) 

according to Ref. [30] can be presented by: 

௞ߛ ൌ
ଵ

ௐ
∑ ሺݖ௜ െ ොపҧሻݔ௜ܪ ൈ ሺݖ௜ െ ොపҧሻ்௞ݔ௜ܪ

௜ୀ௞ିௐାଵ   (23) 

where, ܹ is the window size which is given by the 

moving window technique. Thus, the difference 

between the actual and estimated covariance matrices 

 :can be presented by (ߝ)

௞ߝ ൌ ௞ߛ െ መܵ௞            (24) 

In fact, the value of ߝ  can display the level of 

divergence between the actual and the estimated 

covariance matrices. When the value of ߝ is close to 

zero, the estimated and the actual covariance matrices 

will be very similar and the absolute value of the ߝ can 

be neglected. However, if the value of ߝ is not near to 

zero (smaller or greater than zero), an adaptation is 

considered in the algorithm and the value of Rk in Eq. (22) 

should be adjusted to compensate this difference.  

The proposed rules assessment according to the 

difference between the actual and the estimated 

covariance matrices is described as three scenarios of 

MF. If the value of ߝ is higher than zero, then the value 

of ܴ௞ is turned down in accordance with the value of 

δR௞; If the value of the ߝ is less than zero, then the 

value of ܴ௞ is turned up in accordance with the value 

of δR௞; If the value of ߝ is close to zero, then ܴ௞ is 

unchanged.where, ܴߜ௞ ൌ ܴ௞ െ ܴ௞ିଵ.  

Fig. 7a explains the grade of the membership 

parameter in the five fuzzy sets. For example, if ܴߜ௞ is 

close to zero, the grade of MF is shown with I2 in the 

AFIS. As the degree of MF in the fuzzy set is I1 or I4, it 

approaches to minus one.  

The MF of the output for the proposed AFIS model 

is presented in Fig. 7b. The output is the value of ܴߜ௞ 

which changes from –1 to 1. Moreover, it is fuzzified in 

seven levels from O1 to O7. These seven levels are 

important to differentiate between the likelihood levels. 

The next section presents the performance of the 

proposed AFIS/KF within simulation experiments. 

4. Simulation Experiments and Analysis 

Results of the AFIS/KF method are compared with 

those obtained from conventional KF to evaluate the 

performance of the proposed model. A loosely 

coupled structure for GPS/INS integration is 

considered in this study. The navigation system is 

shown in Fig. 8. The error state related to system can 

be presented as: 

ݔߜ ൌ ሾ݊ߜ ݁ߜ ௡ݒߜ ௘ݒߜ  ሿ்      (25)߰ߜ

where, ݊ߜ and ݁ߜ are the north and the east position 

errors; and ݒߜ௡ and ݒߜ௘  are the north and the east 
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Fig. 9  Trajectory in three main time-segments due to the dynamics characteristic.  
 

Table 3  Definition of the GPS outages based on their durations in the trajectory.  

Outages (No.) Period (s) Start-point (s) Stop-point (s) 

1 60 296 356 

2 90 896 986 

3 92 1,510 1,602 

4 83 2,160 2,243 

5 48 3,230 3,278 
 

 
Fig. 10  Position, velocity and heading errors in normal situation of GPS. 
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