ABSTRACT

1. Development of Interference mitigation technologies for Next-Generation Satellite Communications
2. Investigation of novel cognitive systems architectures and advanced digital signal processing techniques
3. Demonstration of advanced proof-of-concept Hardware/Software prototypes to mitigate Interference events in Satellite Communications (SatCom)
4. To provide management tools and anti-jamming techniques to aerospace industry

RESEARCH PROBLEMS

Context of SatCom spectrum and limitations:

1 - Near-congestion of satellite communication bands (L / S / C / Ku)
 There is a steady growth of deployed services and new applications
2 - Scarcity of Radio Frequency (RF) spectrum
 The congestion of conventional frequency bands is a major barrier to the deployment of new services
3 - Increase of Interference events: more and more complex with severe impacts
 Radio Frequency Interference continues to degrade transmissions and disrupt the SatCom industry
4 - Issues on Ka-band
 Designed to bring new capacities and supplement SatCom bands, this band has not been widely adopted by operators due to its cost and susceptibility from rain and other weather conditions

Urgent Need! Tackle man-made interference due to:

- Human error
- Improper installation
- Lack of training
- Poor or sub-standard equipment
- Equipment failure
- Lack of adherence to regulatory requirements and industry standards
- Poor system design
- Adjacent/Nearby systems
- Terrestrial interferers
- Orbital interferers
- RF jammers
- Malicious interference
- Spoofing attacks

OBJECTIVES

1) DETECT
 Detect the presence of interference and identify all sources
2) CHARACTERIZE
 Recognize, measure and classify interference signal signatures
3) LOCATE
 Determine the interference position, orientation and affected areas
4) MITIGATE
 Remove the interference in real-time, or at least reduce its effects
5) MONITOR
 Build an Atlas database for spectrum management allowing real-time effective interference counter-measures

To ensure in real-time and for all SatCom bands:

1) Robustness 2) Reliability 3) Integrity 4) Quality of Service (QoS)
5) Continuity 6) Availability 7) Accuracy 8) Quality of Experience (QoE)

RESEARCH FIELDS

Aerospace Engineering Signal Processing Navigation Antenna Design Hardware In the Loop
Satellite Technologies Digital Communications Microelectronics Electromagnetic Interference

PROJECT DETAILS

Project Title:
Interference Mitigation in Satellite Communications
Project Code: AVIO-601
Project Start Date: 1st October 2014
Project End Date: 30th September 2018
Project Duration: 4 Years

PROJECT WORK PLAN

Phase 1 - Research process (2014-2015)
1) Technological reviews
2) Problematic studies
3) Requirements definition
4) Selection of techniques

Phase 2 - Development process (2015-2016)
1) Algorithmic design
2) SW Initial implementation
3) Initial simulations
4) SW Performance evaluation

Phase 3 - Integration process (2016-2017)
1) SW-HW specifications
2) Integration on HW platform
3) Interference scenarios
4) Laboratory and in-field tests

Phase 4 - Demonstration process (2017-2018)
1) HW optimization
2) In-field demonstrations
3) Prototypes validation
4) Deliverables and final reports

*SW : software * HW : hardware
PROJECT SCOPE

1) Characterization of SatCom Interference environment and effects
2) Development of practical models based on fundamental and state-of-the-art theories
3) Simulation, analysis and demonstration of the five AVIO-601 goals and associated modules
4) Implementation of a full-duplex SatCom emulator testbed and interference scenarios
5) Integration of developed modules on SDR platforms
6) Performance analysis of the integrated prototypes in SatCom Emulator and real testing environment
7) Validation and technology transfer to our industrial partners

PROJECT BENEFITS

1) To provide tools to detect, characterize, locate, mitigate and monitor interference
2) To deliver a transmission with a performant and consistent Quality of Service (QoS)
3) To improve end-users’ Quality of Experience (QoE)
4) To enable regulators to easily manage spectrum requirements
5) To establish a productive international collaboration between countries (legal vs technology)
6) To stimulate economy and influence establishment of R&D centers and enterprises
7) To train future space community leaders and provide Highly Qualified Personnel (HQP) to industry
8) To enhance collective knowledge through improved education and advanced training
9) To engage stakeholders investigating satellite communications issues (interference, space security and sustainability) through technical, socio-economic and legal aspects

EVERYONE IS BENEFITING:
Operators, manufacturers, broadcasters, regulators, officials, institutions, scientists, academia and end-users

WORLD UNIQUE LABORATORY SATCOM LINK EMULATOR

- **UNIQUE LABORATORY FULL-DUPLEX SATCOM LINK EMULATOR**: Simulate in real-time a complete satellite network enabling advanced complex interference scenarios using Software-defined radios (SDR) and powerful satellite channel emulator

- **RT LOGIC T400CS**: World-class channel emulator featuring IF and RF hardware-in-the-loop (HIL) tests: flight and ground system testing, interference and reference signal generation, compliance and performance loop-back testing, training capabilities

- **BEECube BEE4 SDR PLATFORM**: Full-speed prototyping platform serving as a complete “Satellite Emulator” enabling real-time implementation and emulation of Satellite transponder functionalities

- **NUTAQ SDR SOLUTIONS**: Featuring digital signal processing to enable the development and integration of AVIO-601 techniques developed by researchers (detection, characterization, geolocation, mitigation, spectrum monitoring)

PARTNERS

SENIOR RESEARCHERS
Prof. René Jr. Landry (ÉTS, P.I.)
Dr. Omar Yeste (ÉTS)
Prof. Wessam Ajib (UQÀM)
Prof. Long Le (INRS)
Prof. Jean-Jacques Laurin (Poly. Montreal)
Prof. Chahé Nerguizian (Poly. Montreal)
Prof. Yousef R. Shayan (Concordia)

CONTACT:
Prof. René Jr. Landry
ÉTS, 1100 Notre-Dame Street West
Montreal, Quebec, Canada, H3C 1K3
+1 (514) 396-8506
Rendyr.Landry@etsmtl.ca
lassena.etsmtl.ca