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NOMENCLATURE
a Earth major semi-axis
[IaB]B accelerometer output
C2,0 dominant spherical harmonic coefficient of

ellipsoid mass-attraction gravity equation
NCB rotation matrix from the body frame to the

navigation frame
NCC rotation matrix from the geocentric frame to

the navigation frame
ECN rotation matrix from the navigation frame to

the Earth frame
NFC Earth curvature matrix
GM gravitational constant × Earth mass
gp plum-bob gravity
g ellipsoid mass-attraction gravity
h altitude
L longitude
l geodesic latitude
lc geocentric latitude
r position vector (from the center of the Earth to

the body-frame origin)
S{v} anti-symmetric matrix of vector v
T normalized simulation time
Tk sampling time of high-frequency Savage

algorithm
Tm sampling time of intermediate-frequency

Savage algorithm
Tn sampling time of low-frequency Savage

algorithm
[ZuN]N unit vertical vector
U, V, W x, y, z components of the translational velocity

in the body frame
[EvN]N translational velocity in the navigation frame
vm velocity increment (from accelerometer)
Va airspeed
WA wander angle
α angle of attack
�( )t rotation increment (from rate gyro)
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ABSTRACT
Great interest has been generated in low-cost inertial
navigation systems (INS) in the last few years. The
development of Micro-Electro-Mechanical Systems
(MEMS) in the last decade has permitted mass production
of devices, thereby reducing the cost of previously
expensive sensors. Simulation is part of the design process
of an INS. However, if we exclude proprietary simulators,
simulation package tools available until now to achieve this
goal are Matlab script files. To realize fast prototyping
systems, to take advantage of modular design and to allow
rapid real-time testing, a Simulink-based INS simulator has
been created. This simulator is designed in several modules
allowing point-wise improvements or modifications that do
not affect the overall modules. This paper addresses the
validation and the performance evaluation of the simulator.
Given the results of two validation methods, it can be
concluded that the Simulink simulator can now be used to
design inertial navigation algorithms. Also, performance
analysis of built-in Simulink integration schemes,
compared with the well-known Savage two-speed
integration algorithm, indicates that the automated-code
integration algorithm is suitable for inertial navigation
applications. In fact, for similar processing time, the
position error of the 4th-order Runge�Kutta solution,
compared to the Savage one-speed simplified integration

continued on page 150
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β angle of side-slip
�m coning increment
βsc cone angle of the spin-cone trajectory
∆vscul m sculling increment
δl deflection of the vertical
θ pitch angle
� Z
N vertical component of �N

φ roll angle

�m rotation vector of the body frame during one
integration step

ψ yaw angle
ψtr true heading
ωc precessional rate of the spin-cone trajectory
ωe Earth rotational rate
ωs spin rate of the spin-cone trajectory
[ ]I

B B� rate gyro output
[ ]N

B B� body rate
[ ]E

N N� transport rate (��N)

INTRODUCTION

For many years, low-cost inertial navigation systems (INS)have been a subject of great interest. In the last decade, the
development of Micro-Electro-Mechanical Systems (MEMS)
has permitted mass production of devices, thereby reducing the
cost of previously expensive sensors (Lawrence, 1992).
Applications for such systems are numerous and many
researchers around the world are now making efforts to
integrate low-cost and low-precision sensors into INS with
improved performance.
Simulation of INS integration algorithms is a mandatory

step prior to real-time implementation to validate the design
and assess the performance (Biezad, 1999). Furthermore,
numerical analysis of algorithm behavior is necessary since the
highly non-linear equations governing the system prohibit
extensive analytical analysis of closed-form solutions.
If we exclude proprietary simulators, the only simulation

package tools available until now to achieve this goal are
Matlab script files (GpSoftNav, 2003). To our knowledge, only
one simulator that uses Simulink for INS budget error analysis
has been publicly presented (Eck et al. 2001). However, this
simulator uses a flat-Earth hypothesis and neglects the Earth
rate and the transport rate in the computation of inertial
measurements. Even if those small contributions cannot be
measured by the low-cost sensors used in the study (due to their
low accuracy), their effects should be taken into account in the
simulation of the true vehicle motion.
It is believed that Simulink-based simulators will form the

next generation of INS algorithm validation schemes. The
integration methods already implemented in Simulink permit
the design of algorithms based on their continuous-time
version.
Simulink�s modularity and easy graphical design make it

convenient for point-wise improvements and facilitate the
ramp-up knowledge of future contributors (Otter and Cellier,
2000). Also, one of its powerful assets is the possibility to do
rapid real-time testing through the Real-Time Workshop
(RTW) suite and the xPC Target of Mathworks (or any other
real-time environment compatible with RTW). This design
scenario (simulation of an algorithm and real-time testing via
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algorithm, is improved by 8% for low-sample-rate inertial
measurements. The Simulink simulator will be an
important tool in the design of innovative algorithms
suitable for use in conjunction with MEMS inertial sensors
in low-cost navigation systems. Upon completion, this
software will permit rapid prototyping and easy-to-use
design for low-cost GPS-aided electronic inertial
navigation systems.

RÉSUMÉ
Les sytèmes de navigation inertielle (SNI) à faible coût ont
généré beaucoup d�intérêt depuis quelques années. En
effet, le développement des capteurs micro-électro-
mécaniques (CMEM) a permis la réduction du coût des
capteurs inertiels, principalement à cause de la production
de masse associée à ce type de technologie. Une étape
importante dans la conception des SNI est la simulation de
son comportement de façon à valider l�atteinte des
objectifs établis au départ. Par contre, en excluant les
simulateurs privés, les outils disponibles pour concrétiser
cette étape sont basés sur du code MatLab. Insatisfait des
possibiltés offertes par une telle architecture, et de façon à
optimiser le processus de conception des SNI, un
simulateur basée sur l�application Simulink a été conçu.
Cet article présente la validation et l�évaluation de la
performance de ce simulateur. Par deux méthodes de
validation, il est démontré que le simulateur est efficace
pour la simulation d�algorithmes de navigation. De plus, la
comparaison des algorithmes d�intégration internes à
Simulink avec l�algorithme standard utilisé jusqu�à
maintenant permet d�affirmer que les algorithmes générés
automatiquement par Simulink sont appropriés pour
l�utilisation dans des SNI. Dans certaines conditions,
l�erreur de position avec l�utilisation d�une méthode
Runge�Kutta donne une amélioration de 8 % par rapport
aux algorithmes de Savage. Le simulateur basé sur
Simulink sera un outil très important pour la conception et
la validation d�algorithmes innovateurs utilisant des
capteurs inertiels CMEM. La version finale du simulateur
permettra de concevoir rapidement des algorithmes pour
des SNI à faible coût hybridés avec un récepteur GPS.
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rapidm prototyping) reduces the delay between the validation
of the algorithm and its real-time implementation.
The core function of an inertial navigation system is to

integrate the acceleration and the angular-velocity
measurements to produce position, velocity, and attitude
solutions, based on non-linear ordinary differential equations
of motion. Savage�s two-speed integration algorithm (Savage,
1998a, 1998b) is considered nowadays as the state-of-the-art
integration scheme (Litmanovich et al., 2000). However, how
does the resulting integration algorithm from the Simulink
environment compare to the �conventional� approach?
Although many people state that one-speed higher order
integration algorithms are now applicable, due to modern-day
computer capabilities (e.g., Savage, 1998a; Litmanovich et al.,
2000; Chatfield, 1997), only a few seem to have actually
implemented them. In this respect, Eck et al. (2001)
implemented a one-cycle integration algorithm and neglected
the coning and sculling terms in the overall solution. Their
paper stated that several algorithms and integration rates were
compared, but no results on that topic were shown.
This paper will address two significant aspects of a new

generic Simulink INS simulator. First, the validation of the
inertial-data -generation module (based on the ideal trajectory)
will be performed. This validation will be twofold: an
input�output validation, and a comparison with another,
already validated, simulator used at the National Research
Council, Ottawa (Leach and Hui, 1999). Second, and more
importantly, the performance of the Simulink integration
schemes (for direct implementation) will be compared to the
conventional approach.
The first section will introduce the simulator, with basic

mathematics about the kinematics that constitute the core of the
inertial measurement and trajectory generation. Then, the
software architecture will be presented and the functionality of
each module will be described. The next section will validate
the inertial-data generation module. Finally, the basics of the
INS integration algorithms, and performance analysis of those
algorithms, will be given.

MATHEMATICAL BACKGROUND
The following mathematical conventions are introduced to

evaluate sensor measurements, i.e., angular rates and linear
accelerations; and to determine the kinematic variables
associated with the desired trajectory. The coordinate frames
used are the same as the ones defined by Savage (1998a), and
shown in Figures 1 and 2.

� Earth-Centered Inertial (I) frame: non-rotating inertial
coordinate frame used as a reference for angular rotation, axis
Y is directed towards the celestial north pole, axis X towards
the vernal equinox, and axis Z is set to define rectangular
coordinates;

� Earth-Centered Earth-Fixed (E) frame: Earth-fixed frame
used for position location definition, the Y axis is parallel to

the Earth�s polar axis, the X axis passes through the
Greenwich meridian, and the Z axis is perpendicular to the X
and Y axes;

� Geographic (G) frame: locally level geographic frame
defined with its Z axis upward along the local geodetic
vertical, Y axis north (horizontal) and X axis east (horizontal);

� Navigation (N) frame: locally level frame used to integrate
acceleration into velocity, defining the orientation of the local
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Figure 1. Inertial Frame (I), Earth-Centered Earth-Fixed Frame (E),
and Local Geographic Frame.

Figure 2. Local Geographic Frame (G), Navigation Frame (N), and
Body Frame (B).
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vertical in the E frame, and as a reference for describing the
strapdown sensor coordinate frame orientation. It is defined
with its Z axis upward along the local geodetic vertical, and
rotated with respect to the Z axis of the Geographic frame by
the wander angle (WA);

� Body (B) frame: vehicle-fixed frame with axes parallel to
nominal right-handed orthogonal sensor input axes. Without
loss of generality, the sensor frame is assumed to be
coincident with the body frame for the rest of the paper.

To express the equations of motion, the following
conventions are used:

� ACB: matrix of rotation (direction cosine matrix) from the
frame B to the frame A

� [AvB]C: the velocity vector of the frame B with respect to
(w.r.t.) the frame A, measured w.r.t. the frame C

� S{[AvB]C}: the anti-symmetric matrix of the vector [AvB]C,
where

S
v v

v v
v v

z y

z x

y x

{[ ] }A
B C

0
0

0
v =

−
−

−

















SIMULATOR ARCHITECTURE
The software simulator is designed in a modular fashion to

allow easy reconfiguration of all sub-systems. Figure 3 shows a
blockset of the simulator. Only the trajectory generation, the
inertial-data generation, and the inertial navigation algorithm
modules are addressed in this paper. In fact, for the validation
and performance evaluation of the simulator, the model used
for the sensors is simply a sampling of the ideal inertial
variables. Also, the GPS model will be of use only while
evaluating algorithm performance with respect to Kalman-
filtering implementation.

Trajectory Generation
The trajectory generation phase of the simulator is separated

into two sequences: one off-line and a second on-line.

Off-line Data Products
The trajectory generation is first based on a set of data points

representing a flight profile, e.g., airspeed (velocity of the
vehicle w.r.t the air mass), heading, attitude, angle of attack,
and angle of side-slip. The last two parameters can be neglected
for a first approximation, by letting the vehicle longitudinal
axis be parallel to the airspeed vector. Table 1 shows a typical
set of data points for the flight profile and represents the step
No. 1 and the variable set No. 1 in Figure 4.
Then, the first set of variables is used to obtain trajectory

information at a given sampling rate using cubic splines (step
No. 2 in Figure 4). Cubic splines are also used to compute the

rate of change of those variables. Given the order of the
interpolation, the rate of change of the variables is a continuous
function. Hence, the variable set No. 2 is composed of:

� the Euler angles (φ, θ, ψ)

� the Euler angle rates (�φ, �θ, �ψ)

� the airspeed (Va)

� the rate of change of the airspeed ( �Va)

� the angle of attack and angle of side-slip, where applicable
(α, β)
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Figure 3. Simulator Blockset.
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� the angle of attack rate and angle of side-slip rate, where
applicable ( �α, �β)

On-line Simulink Module
After the off-line data processing, the Simulink module

�Trajectory generation� (in Figure 3) uses this information to
compute several kinematic variables to be used in the �Inertial-

data -generation� module, starting with the velocity in the body
(B) frame

[ ] [ ]E
N B

E
B B

a

a

a

c c
s
c s

v v= =
















=









U
V
W

V
V
V

β α
β
β α





(1)

where cβand sβare, respectively, the cosine and the sine of theβ
angle (and so on for other angles). Also, U = Va and V = W = 0
for zero angle of attack and angle of side-slip.
The velocity in the navigation (N) frame is then calculated

from the velocity in the body frame

[ ] [ ]E
N N

B
N
T E

N Bv v= C (2)

where B
N
TC = f (φ, θ, ψtr , WA) is the transpose of the well-

known direction cosine matrix.
The rate of change of the velocity in the navigation frame is

also needed. It is calculated as follows:

[ � ] � [ ] [ � ]E
N N

B
N
T E

N B
B

N
T E

Bv v v= +C C N (3)

= +B
N
T N

B B
E
N B

B
N
T E

BC S C N{[ ] } [ ] [ � ]� v v (4)

with

[ � ]

� � �

� �

�

E
N B

a a a

a a

a

c c s c c s
s c

c
v =

− −
+

V V V
V V

V

β α β β α βα α
β β β

βs s s c ca aα β β α βα α− +















V V� �

(5)

from the derivative chain rule applied to Equation (1) and
[ ]N

B B� given by Equation (6).

[ ]

�

�

�

N
B B

1 0 s
0 c s c
0 s c c

� =
−

−

























θ
θ
θ

θ
ψ

φ φ
φ φ

φ







(6)

Inertial-data-Generation Module

Angular Velocity
The angular velocity of the body frame w.r.t. the inertial

frame measured in the body frame (the rate gyro
measurements) is given by Equation (7)

[ ] [ ] [ ] [ ]I
B B

B
N
N

E
I

E E
B

N
E

N N
N

B B� � � �= + +C C C (7)

where NCE is the position matrix (refer to Equation (12) in
section �Inertial navigation integration algorithm�). The
angular velocity can be decomposed into three components: the
attitude rate given by the Euler angle rates (Equation (6)), the
Earth rate [ ]I

E E� = [ ω0 e
T0] , and the transport rate �N �

[ ]E
N N� . The complete expression for �N can be found in

Savage (1998a).
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Figure 4. Trajectory Generation Module Inputs.

Time
(s)

Heading
(°)

Pitch
angle (°)

Roll
angle (°)

Airspeed
(m/s)

0.0 45.0 0.0 0.0 0.0
1.0 45.0 0.0 0.0 5.0
2.0 45.0 0.0 0.0 10.0
14.0 45.0 0.0 0.0 70.0
15.0 45.0 0.0 0.0 75.0
� � � � �

181.0 45.0 9.5 0.0 76.2
182.0 45.0 9.0 0.0 77.5
198.0 45.0 4.5 0.0 97.5

� � � � �

Table 1. Example of Flight Profile Data.
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Specific Force
The specific force is the total non-gravitational acceleration

of the body frame w.r.t. the inertial frame measured in the body
frame, and it is the output of the accelerometers. It is calculated
by inverting the velocity-rate equation (see Equation (11)) and
is given in Equation (8). The specific force is composed of the
kinematic acceleration, the negative of the plumb-bob gravity,
and the Coriolis acceleration, all of them measured in the
navigation frame.

[ ] ([ � ] [ ]I
B B

B
N

E
N N p Na v= − +C g (8)

( { } {[ ] })[ ] )S S� �N I
E N

E
N N2+ v

The plumb-bob gravity is the sum of the mass attraction of a
fixed-Earth and the centripetal acceleration.

[ ] [ ( {[ ] } {[ } )g g rp N N
N

E
I

E E
I

E E] ]= − C S S� � (9)

where [g]N is the acceleration based on the mass attraction.
Refer to Chatfield (1997) for the details of the calculation of
[g]N. The position vector r is the vector from the center of the
Earth to the vehicle position.

SIMULATOR VALIDATION
The validation of the inertial-data -generation and

trajectory-generation modules of the simulator will be
performed in two steps. First, the ideal continuous inertial
navigation algorithm will be implemented and the output will
be compared to the initial designed flight path. This will
highlight any coding errors. A second validation will be based
on a comparison of the outputs of the inertial generation
module with the outputs of a similar already validated inertial
simulator from the National Research Council�s Institute for
Aerospace Research (Leach and Hui, 1999). The validation
flight profile is depicted in Appendix A.

Input�output validation
The first method of comparison is based on the difference

between the input to the trajectory-generation module and the
output from the ideal continuous inertial navigation algorithm.
The continuous version of the integration algorithm is
represented by Equations (10) to (13). Figure 5 shows a
graphical representation of the validation scheme.
To evaluate discrepancies between the two block-functions,

no sensor errors nor sampling rate are used in the sensor
module. Moreover, the integration scheme in the Simulink
environment is set to a variable-step, high-order, modified
Runge�Kutta method (refer to section �the ODE integration
suite of the Simulink environment� for more information).
No significant errors have been found in any variables. As a

result, the maximum position error magnitude was 10�7 m for
the flight profile. However, since this validation scheme only
guarantees that the trajectory generation and inertial-data

-generation modules are the exact inverse of the inertial
navigation algorithm, another type of validation has to be done.
This second validation procedure is explained in the next
section.

Validation by Model Comparison
The second method used to validate the Simulink simulator

is to compare its inertial-data -generation-module outputs to
another, already validated, simulator. Figure 6 illustrates the
implementation of the validation structure.

It should be noted that there is a difference in the gravity-
vector models being used. The NRC�s simulator uses a variant
of the International Gravity Formula (Li and Goetze, 2001)
while the Simulink simulator uses the ellipsoid mass-attraction
gravity formulation (Chatfield, 1997). Because of this
difference, the accelerometer outputs have been compared
without the computation of the gravity vector. Figure 7
illustrates that difference and Figure 8 points out the difference
in angular velocity.
It can be seen from these figures that small discrepancies

exist in the inertial-data generation (the X and Z axes are
acceleration and the Y axis angular rate). In fact, these errors are
only present at the beginning and at the end of the trajectory
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Figure 5. Input�Output Validation.

Figure 6. Validation by Model Comparison.
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and are mainly due to different cubic spline algorithms,
resulting in a slightly different rate of change of velocity and
rate of change of attitude.
Figure 9 shows the real altitude computation. It can be seen

that there are some differences between the true altitude
computed from the NRC simulator and the Simulink simulator.
In addition to the different integration algorithms used in both
simulators, which may cause slightly different outcomes, the
cubic spline algorithms have an influence on the trajectory-
profile computation accuracy (true altitude, longitude, and
latitude). As for the errors found in the acceleration and rate
gyro measurements (Figures 7 and 8), the different cubic spline
algorithms gave different extrapolation values during the
dynamic parts of the flight profile (time tags: 200, 300, 600,
900, and 1000 s) that are transmitted to the trajectory
generation variables through Equations (1) and (2).

It should be clarified that the real trajectory computation of
the NRC simulator is exact for the generated inertial sensor
measurements, as the real trajectory computation of the
Simulink simulator is for its inertial-data sets. Because of their
respective intrinsic algorithms, one should not have expected
perfect match between their outcomes. However, given that the
resulting trend is highly similar, it can be concluded that the
Simulink simulator is now ready for practical use in the design
of inertial navigation algorithms.

INERTIAL NAVIGATION INTEGRATION
ALGORITHM
Most of the algorithms used to integrate the acceleration and

the angular velocity measurements to produce position,
velocity, and attitude solutions are based on the following
ordinary differential equations of motion:

N
B

N
B

I
B B

I
N N

N
B

� {[ ] } {[ ] }C C S S C= −� � (10)

[ � ] [ ] [ ]E
N N

N
B
I
B B p Nv a g= + −C (11)

( {[ ] } {[ ] }) [ ]S SE
N N

I
E N

E
N N2� �+ v

E
N

E
N

E
N N

� {[ ] }C C S= � (12)

� [ ] [ ]h vZ= ⋅ =Z
N N

E
N N

Nu v (13)

with the inputs being [ ]I
B B� (rate gyro) and [IaB]B

(accelerometer). In this formulation, the position update
(Equation (12)) is based on the position matrix ECN, by which
the latitude and the longitude can be computed from its
components. However, position updates can also be performed
by integrating the rate of change of the position vector
[ � ] )E

N Nr = [EvN]N and using geographic position equivalent

© 2003 CASI 155

Vol. 49, No. 4, December 2003 Vol. 49, no 4, décembre 2003

Figure 7. Difference in Acceleration from Both Simulators.

Figure 8. Difference in Angular Velocity from Both Simulators.

Figure 9. Difference in Altitude from Both Simulators.
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transformations, or directly by integrating the rate of change of
the latitude � ([ ] )l f= E

N Nv and the longitude � ([ ] )L f= E
N Nv .

During the early days of INS integration-algorithm
design, major trade-offs were done between solution
accuracy and computation load. The two approaches were
high-speed first-order and low-speed high-order digital
algorithms. In the mid-1960s, Savage proposed a two-speed
approach: a simple high-speed first-order algorithm that feeds a
moderate-speed high-order algorithm. This algorithm (Savage,
1998a, 1998b) is now considered the state-of-the-art for inertial
navigation integration and is used in most of the modern day
strapdown inertial systems for aircraft (Litmanovich et al.,
2000).
However, the throughput limitations of early embedded

computers are now becoming irrelevant with the increase of
computing capabilities of modern technology (Savage, 1998a;
Litmanovich et al., 2000). As an example, the PC104 standard
makes use of the same development tools as the full-size PCs.
Although only about 4′ ′ × 4′ ′, PC104 boards are very powerful
for their size (1 in = 2.54 cm). These products are designed for
minimal power consumption, small foot print, modularity,
expendability, and ruggedness � basic needs of an embedded
system. Hence, more computationally demanding algorithms
(and, therefore, more accurate) are nowadays potential
candidates for INS integration schemes. The next sections will
compare one-speed integration schemes included in the
Simulink environment and the two-speed approach of Savage.

The Two-Speed Integration Scheme of Savage
The complete set of equations for the two-speed integration

algorithm of Savage can be found in two comprehensive papers
(Savage, 1998a, 1998b). Only the basic ideas will be presented
here. Figure 10 shows the implementation blockset of the two-
speed integration algorithm.
The algorithm solves the differential equations based on the

exact form. As an example, the velocity-update equation will be
presented. Equation (11) shows the continuous version of the
velocity update. By taking the discrete counterpart, it gives

[ ] ( ) [ ] ( )E
N N

E
N N 1v vm m= − (14)

+ + −
−

∫ ( [ ] [ ] ] )N
B
I
B B p N

E
N N[ dC t

t

t

m

m a g v
1

�

where the matrix � is given by

� = 2E
N N

I
E NS S{[ ] } {[ ] }� �+ (15)

The integral term of Equation (14) can be split into two
integrals

[ ] ( ) [ ] ( )E
N N

E
N N 1v vm m= − (16)

+ − +
− −

∫ ∫([ ] ] ) ( [ ] )g v ap N
E
N N

N
B
I
B B[ d d

t

t

t

t

m

m

m

mt C t
1 1

�

The first integral is called the gravity/Coriolis correction-
velocity increment and can be integrated using mid-interval
extrapolation and a simple trapezoidal integration algorithm.
The second integral of Equation (16) is the velocity increment
from the accelerometer and can be computed as follows:

[ ] ( ) ( [ ] ) )I
B N

N
B
I
B B d∆v am C t

t

t

m

m=
−

∫
1

(17)

≈ +N
BC (vm

1
2 scul mS m m{ } )α v v+ ∆ (18)

where
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Figure 10. Two-Speed INS Algorithm.
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vm is the velocity increment from accelerometer;
1
2 m mS{ }� v

is the velocity rotation compensation increment; and ∆vscul m is
the sculling increment.
The sculling increment takes into account combined

dynamic angular-rate/specific-force motion and is calculated in
the high-speed portion of the algorithm. The attitude update
equation also has a high-frequency component due to the
coning effect. The coning increment takes into account the
rotation of the angular rate vector and is a compensation term
for the rotation-matrix equivalent-rotation vector. Those
components take into account high-frequency input and
characteristic motion effects in the inertial measurements and
are computed at a high rate fk = 1/Tk.
On the other hand, the moderate-speed algorithm (Tm > Tk)

computes the attitude and velocity solution. The value of the
high-frequency components at the m time step are then used in
the moderate-speed portion of the algorithm (Equation (18)
into Equation (16)) for the velocity update; the attitude update
equation is not elaborated herein.
The position solution can be determined at an even slower

rate (n > m > l), depending on the application. However, to
facilitate the implementation of Savage�s algorithm in
Simulink, only one high-speed cycle will be implemented. In
other words, the position matrix, the local-level orientation, the
velocity, and attitude-direction cosine matrix are updated at the
same time as the coning and sculling increments (Savage,
1998a, 1998b): (Tk = Tm = Tn). Also, the trapezoidal position
algorithm will be preferred to the high-resolution position
algorithm.

The ODE Integration Suite of the Simulink Environment
There are many ways to discretize continuous-time

differential equations (Santina et al., 2000). The use of the state
transition matrix is the most accurate but not practical in our
application. However, the integration of continuous equations
within Simulink is based on the approximation method. The
approximation method refers to Equation (14). Instead of
splitting the integrand into several integration rates (like the
Savage algorithm does), the integral of Equation (14) is
performed using one integration algorithm, preferably of high
order. Many integration schemes are available with Simulink
(Shampine and Reichelt, 1997). Only the fixed-step methods
will be evaluated, since they are the ones compatible with the
Simulink Real-Time Workshop application that creates
automated compiled code. The five methods of integration are

� ode5: the Dormand�Prince formula

� ode4: the fourth-order Runge�Kutta formula

� ode3: the Bogacki�Shampine formula

� ode2: Heun�s method

� ode1: Euler�s method

The Bogacki�Shampine formula, the 4th-order
Runge�Kutta, and the Dormand�Prince formula are all
variants of the classic Runge�Kutta method and are
characterized as high-order integration methods. On the other
hand, the Euler method is the basic integration scheme of first
order. In between, Heun�s method, also known as the Improved
Euler or the 2nd-order Runge�Kutta, gives good accuracy at a
minimum computation load. Since the input functions (inertial
data) of the ODE�s algorithm are sampled and no interpolation
is done (sample and hold), the high-order methods are only
useful to take into account non-linearities present in the
equation of motion.
It should also be noted that this way of solving the equations

of motion makes use of the velocity rate and the attitude rate
information. Most inertial sensors provide only the increments
of velocity and attitude. Given such a case, the rate can be
retrieved by scaling the output of the sensors by the sample rate.
Such an operation will inevitably increase the noise of the data,
but that will be compensated for by the double integration
nature of the system. In addition, the signal-to-noise ratio is not
affected by scaling, so the Kalman-filter accuracy (for error
compensation) should not be affected.

Performance Analysis
As with the validation sequence, integration algorithms have

been tested using the same trajectory, shown in Appendix A.
Two main parameters will be compared, the computation load
and the integration solution accuracy. For a first approximation,
the computation load can be linked to the off-line simulation
time. To roughly evaluate the real-time implementation
feasibility, the simulation time will be normalized with respect
to the real-trajectory flight time. On the other hand, the solution
accuracy is represented by the magnitude of the position error
vector (the equivalent spherical error).
Figure 11 shows the normalized simulation time T of

Simulink�s ODE integration suite and Savage�s one-speed
algorithm. The simulation has been performed on a personal
computer with a 933 MHz Pentium III processor and 256 Mb of
random access memory (RAM). Of course, computation load
increases with increasing data-sample rates, leading to longer
simulation time. The portion of the curves below the unity
normalized time, T < 1, represents possible pairs of parameters
(integration algorithm and sample rate) for real-time
implementation.
A few remarks have to be made at that point. First, Simulink

uses an interpreted language compiler. Hence, the auto-
generated C code from Simulink RTW will be much faster,
between 5 to 10 times. Second, the high sample rates used in
the graph are useful for seeing the trend, but are not very
realistic for real-life scenarios. Also, it should be noted that,
with a slight decrease in numerical accuracy, the computation
burden of the two-speed integration algorithm would be less
than its one-cycle counterpart. And finally, since the actual
implemented algorithm does not include any error
compensation by Kalman filtering, further computation load
analysis should be performed with an error compensation
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algorithm implemented to ensure real-time capabilities.
Nevertheless, these preliminary results suggest adequate
computational load for real-time implementation.
However, ODE�s solution accuracy tells more about the

integration algorithm effectiveness. From Figure 12, it is clear
that the Euler method (ODE1) is not suitable for the
application. In addition to the integration error of the
translational variables, the attitude cosine matrix solution from
Equation (10) has to be orthogonalized at nearly every
integration cycle, leading to unacceptable position accuracy.
From Figure 12, the other integration methods seem to have

similar numerical accuracy for the proposed flight profile.
However, with a closer look at Figure 13, we see that for low-
rate inertial data (20 Hz), the accuracy of the RK4 compared to
Savage is improved by 8%. This can be partly explained by the

use of a trapezoidal integration algorithm for the moderate-
speed part of Savage�s algorithm compared with high-order
integration. As the sample rate increases, this difference
becomes less, as expected.
The previous flight profile does not include important

dynamic motion, nor coning and sculling effects. So, to
evaluate the effectiveness of the integration algorithm in the
presence of high-dynamic motion and the coning effect, a Spin-
Cone trajectory profile has been implemented. Details of this
kind of trajectory are given in Savage (2000). Figure 14
illustrates the Spin-Cone spherical position error for different
integration schemes.
Again, the Euler first-order method is not practical.

Figure 15 zooms the results at the sample rate of 20 Hz and it
shows that the Savage algorithm gives slightly better numerical
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Figure 11. Simulation Time for Simulink ODE Integration Suite.

Figure 12. End of Simulation Spherical Position Error for Simulink
ODE Integration Suite.

Figure 13. Zoom of the End of Simulation Spherical Position Error for
Simulink ODE Integration Suite.

Figure 14. Spin-Cone End of Simulation Spherical Position Error.
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accuracy for the Spin-Cone trajectory. In fact, the gain is very
small (0.1%) in using Savage�s algorithm for conic motion
compared to RK4, whereas it does not provide better accuracy
than the fourth-order Runge�Kutta (RK4) integration
algorithm, in the long run, with a realistic flight profile, as was
shown before (Figure 13). Hence, the RK4 integration
algorithm is suitable for the application discussed herein.
Moreover, Chatfield (1997) suggests in a book the use of the
RK4 method to perform the integration of the equations of
motion.

Another rationale for choosing the RK4 algorithm is shown
in Figure 16. An accepted rule of thumb (Savage, 2000)
suggests that the numerical error resulting from the integration
algorithm should not be more than 5% of the equivalent error
produced by the INS inertial sensors. Figure 16 shows the 5%
spherical position error of several combinations of rate gyro
and accelerometer biases, based on the trajectory of Appendix
A. This figure also includes the spherical position error for the
RK4 integration method as a function of the inertial-data
sampling rate. Based on this criterion, it might be assumed that
all combinations of sensors above the RK4 curve are possible
sets of sensors for an INS using the RK4 as the integration
scheme. These include tactical grade inertial sensors and less
accurate sensors. The sample rate would be chosen based on the
dynamic environment expected.

CONCLUSION
This paper has addressed two fundamental aspects of inertial

navigation integration-algorithm design: the validation of a
Simulink simulator, and the performance evaluation of the
integration algorithms provided within Simulink for inertial-
data integration.
The tools available until now have not been found adequate

for our needs and have forced the development of a modular

and easy to reconfigure inertial navigation simulator. The
successful two-step validation sequence of the simulator
(input�output and by comparison) led to the conclusion that it
was robust enough to be used in the design of inertial
navigation algorithms.
Simulink-based simulators will certainly be the next

generation of INS algorithm validation schemes. It has been
shown that the built-in integration methods of Simulink permit
the design of inertial integration algorithms with accuracy
performance and computation load similar to a state-of-the-art
implementation. Even better accuracy than Savage�s
integration solution (up to 8% improvement) can be achieved at
low inertial measurement rates. With this performance
evaluation, design of inertial integration algorithms will be very
straightforward with the use of a real-time environment
compatible with Simulink and the Real-Time Workshop.
The next steps in the simulator development include the use

of realistic sensor models (Figure 3: sensors model, GPS
model) and the use of a state flow-based Extended Kalman
filter to estimate the navigation errors. At the end of the
development phase, the Simulink simulator and the associated
hardware will constitute a powerful tool to make rapid designs
and prototyping of low-cost GPS-aided INS.
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Figure 15. Zoom at 20 Hz Sampling Rate on Spin-Cone End of
Simulation Spherical Position Error.

Figure 16. End of Simulation Spherical Position Error from Sensors
Bias Compared to RK4 Spherical Position Error.
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APPENDIX A. FLIGHT TRAJECTORY FOR
VALIDATION AND PERFORMANCE EVALUATION
The flight trajectory is composed of a climbing segment, a

cruise segment with turns, and a descent segment. The flight
time is 20 min. Figure A1 gives a general three-dimensional
view of the trajectory, while Figure A2 gives the projection of
the trajectory on the North�East plane, and Figure A3 shows
the altitude profile w.r.t flight time.

160 © 2003 CASI

Canadian Aeronautics and Space Journal Journal aéronautique et spatial du Canada

Figure A1. 3D Trajectory.

Figure A2. North-East Projection of the Trajectory.
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Figure A3. Altitude Profile.
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