Observability of satellite launcher navigation with INS, GPS, attitude sensors and reference trajectory

Yanick Beaudoin a,*, André Desbiens a, Eric Gagnon b, René Landry Jr. c

Abstract
The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and first order Markov processes.

The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll estimation error and gyroscope bias are only observable if attitude reference sensors are present.

1. Introduction
The navigation is a critical element of a satellite launcher. Attitude, velocity and position must be known with the best possible precision in order to correct the launcher trajectory. For decades, purely inertial means of navigation were exploited with success [1]. However, inertial navigation estimates are prone to drift. Therefore, high quality units are needed to provide the required precision. Since those units are expensive, aiding sensors are used to reduce the cost and improve precision [1–3]. To ensure that the INS error is reduced by the aiding sensors, the observability of the navigation model must be verified.

For space vehicles, several navigation systems are proposed. Among others, the solution of an INS combined with a GPS receiver is often put forward [4,5] and is considered as usable [1,2,6]. Some tests were also performed on the Space Shuttle and have demonstrated the viability of this solution [7]. However, it is already known that this solution may suffer from observability problems [8–10]. The observability of this approach involves some maneuvers [11–15]. For example, on a system with a low-grade INS and a single-antenna GPS, the gyroscope bias in the direction of the specific force is unobservable if the vehicle moves with constant attitude and acceleration [12]. Another example is the yaw, which is non-observable, during the hovering of a helicopter [16]. In the context of a satellite launcher, the trajectory is optimized to minimize the fuel consumption. That implies that the trajectory is mostly aimed in one direction. Consequently, there is no flexibility to perform the needed maneuvers. Even though the GPS integration type can improve precision...
and prevents jamming, it has no influence on the observability [14,17]. Therefore, to simplify the analysis, only the loosely coupled integration is studied. A long lever arm between the INS and the GPS antenna may increase the observability problem [12]. Considering that this aspect has already been evaluated, it will not be treated here and the INS and GPS antenna are considered collocated.

To ensure proper attitude estimation, attitude measurements may be needed [18]. For an airplane, the observability of the INS/GPS combination is not guaranteed unless 3 non-aligned GPS antennas with sufficient lever arm are used [19]. On a helicopter, the yaw observability benefits from the addition of a magnetometer [16]. A star tracker can be employed to solve the attitude observability problem on a space vehicle [20]. It was exploited to improve the INS/GPS precision for the SHEFEX-2 mission [21,22].

The reference trajectory data could be used to increase the navigation solution precision and robustness to GPS outages [23]. The underlying idea of this approach is that, on the launch pad, the attitude of the launcher is perfectly known. As the mission progresses, the confidence that the launcher is following the predicted attitude reduces. If this confidence can be quantified, it allows exploiting the reference trajectory attitude data to better estimate the attitude of the launcher. However, the observability of this approach has been evaluated only with the rank of the observability matrix on a INS/GPS navigation system which neglects the sensor biases.

The addition of attitude reference sensors to an INS can improve the precision by reducing the attitude uncertainties. But it does not provide velocity and position observability [20,24,25]. Since this research is seeking for the observability of all states within the navigation model, the solution combining only these two sensor types is rejected.

Different error models could be exploited depending on the sensors used and the possibility of estimating the sensor errors [26]. With low end sensors, the bias could be a significant source of error. The bias drift of an inertial sensor can be modelled as a first order Markov process [16, 27–29]. A time constant of 100 s is often used [30–32]. However, the time constant could be as long as 1 h [2]. In some cases, when the time constant is of the same order of magnitude as the mission time, the bias is simply modelled as a random walk [11–14,33,34]. The effects of the error model on the observability have not been evaluated before and will be explored in this paper.

The observability is often evaluated with the help of the observability matrix rank [11–15,35]. Unfortunately, only considering the rank of this matrix may not be sufficient. Due to the limited digital precision of computers (around 15 digits with double precision in Matlab®), a near singular matrix might not be detected by the rank of the observability matrix. Therefore, the singular-value decomposition or the condition number of the observability matrix provides a better evaluation of the observability [36]. The order of magnitude of the condition number gives an estimate of the digital precision loss. A rough rule of thumb is that an
increase of 10 in the condition number leads to the loss of one significant

digit in the estimates [37].

On the other hand, the time evolution of the estimate covariance

matrix gives information which can be overlooked by the observability

matrix analysis [11,12,35]. The idea is that the variance of an unobserv-

able (or barely observable) state evolves in the same manner either if the

Kalman correction is applied or not. This analysis is highly recommended,

if not essential, to evaluate the performance of the Kalman filter [38]. But,

with higher order systems, this approach can be cumbersome and relations

between states may be difficult to analyze [35]. Fortunately, in the studied

cases, the state relationships are evident. Thus, there is no need to rely on

more complex techniques, such as evaluating the normalized eigenvalues

and eigenvectors of the estimate covariance matrix [35]. The covariance

matrix may also be exploited to evaluate the correlation between states. A

perfect correlation coefficient (negative or positive) can indicate a struc-

tural unobservability, and one should be suspicious of a correlation coef-

ficient which exceeds 0.9 in absolute value [36].

Evaluating the observability of a non-linear system may be complicated.

However, the model can be approximated by a piecewise constant model

and the observability be evaluated locally for each constant segment

rank and the condition number of the observability matrix. Then, the time

evolution of the covariance matrix is exploited to evaluate the observ-

ability quality and the ability of the aiding sensors to correct the INS es-

timates within the mission time. Afterward, the correlation between the

states is analyzed to detect structural unobservability. Next, sensitivity to

measurement outlier tests are performed to confirm the results obtained

from the previous approaches. Finally, unobservable subspaces are

investigated with theoretical analysis of the navigation equations.

The paper is structured as follows: section 2 introduces the navigation

solutions. Then, the methodology and the observability evaluation

technique are presented in section 3. Section 4 shows the observability

results obtained with the studied navigation solutions.

2. Navigation solutions

2.1. INS/GPS navigation model

The first navigation solution is an INS aided by a single antenna GPS

receiver. The navigation model is the following:

\[\begin{array}{c}
\delta \Psi^E_{(k+1)} \\
\delta v^E_{(k+1)} \\
\delta \phi^E_{(k+1)} \\
\delta b^E_g_{(k+1)} \\
\delta b^E_a_{(k+1)} \\
\delta b^E_p_{(k+1)} \\
\end{array}
\]

\[= I_{38} + s_t
\]

\[\begin{array}{c}
-\omega^E_{(k)} \\
-2\omega^E_{(k)} \\
-\frac{1}{c_o} I_3 \\
\frac{2}{c_o} I_3 \\
\frac{2}{c_o} I_3 \\
\end{array}
\]

\[\times
\]

\[\begin{array}{cccccc}
0_3 & 0_3 & -T^E_{B(k)} & 0_3 & 0_3 & 0_3 \\
0_3 & 0_3 & T^E_{B(k)} & 0_3 & 0_3 & 0_3 \\
0_3 & 0_3 & \sqrt{\frac{2}{c_o} I_3} & 0_3 & 0_3 & 0_3 \\
0_3 & 0_3 & \sqrt{\frac{2}{c_o} I_3} & 0_3 & 0_3 & 0_3 \\
0_3 & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 \\
\end{array}
\]

\[+ s_t
\]

\[\begin{array}{c}
\Delta \omega^E_{m(B(k)}} \\
\Delta a^E_{m(k)} \\
\Delta b^E_{g(k)} \\
\Delta b^E_{a(k)} \\
\Delta b^E_{p(k)} \\
\end{array}
\]

\[\text{Observability can also be assessed with theoretical an-

alyses of the navigation equation and observability matrix [11–14,39,41].}

The first contribution of this work is the observability analysis of four

navigation solutions in the context of a satellite launcher mission. The

first solution is a INS combined with a single antenna GPS. The second

solution adds attitude reference sensors to the INS/GPS couple. For the

third approach, the reference trajectory data is added to the INS/GPS

couple as suggested in Ref. [23]. The last solution exploits the GPS, INS,

attitude reference sensors and the reference trajectory. The observability

of the navigation solution with reference trajectory has only been veri-

fied with the rank of the observability matrix on a simpli-

fied model which includes only the GPS and INS as sensors. In this paper,

a more complete evaluation is done using many observability analysis tools

and different sensor models.

The second contribution is the evaluation of the effects on the observ-

ability of the sensor error equations in the navigation model. Each navi-

gation system is tested with two different sets of inertial sensors. Relatively

good sensors are first employed. For these sensors, the bias is considered

low enough to be neglected in the navigation model. Then, low quality

sensors, which require the bias to be estimated, are used. Modelling sensor

biases as a random walk and as a

first order Markov process is explored.

For the third contribution, the observability analysis is done using the

[12,14,39–41].
affected by the noises $\Delta \psi_m^b$ and Δr_m^b. The superscript \{\cdot\}_E$ and \{\cdot\}_B$ respectively means that the variable is represented in the Earth frame and the body frame. The sampling time s_i is 0.005 s, k is the time step, O_i is a $i \times i$ zero matrix and I_i is a $i \times i$ identity matrix.

Different equations can be used to model sensor biases and two of them are tested in this paper. First, biases are modelled by 100 s time constant Markov process, then they are modelled by random walks. To evaluate the effect of modelling the biases as random walks, the shaded terms in equation (1) are set to 0. Then, to remove the different biases, corresponding lines and columns are eliminated. The INS/GPS model is the baseline for all the following models. Therefore, the tests are performed using the same modifications in the upcoming navigation solutions.

2.2. INS/GPS with attitude reference sensor navigation model

Reference attitude sensors add valuable information about the angular motion of the vehicle. Many types of sensors can fulfill the needs of attitude measurement, each with different attributes and weaknesses. Reference attitude sensors might be magnetometers, star trackers, a multi-antenna GPS receiver, etc. Also, combinations of those sensors can be exploited. For the sake of generalization, generic attitude sensors are used in this research. They provide measurements only affected by white noises. To implement these sensors, the only modification needed to the INS/GPS navigation model is the addition of the attitude error measurement $\delta \psi_m^b$ to equation (2):

$$
\begin{bmatrix}
\delta \psi_m^E \\
\delta \psi_m^W \\
\delta r_m^E \\
\delta r_m^W
\end{bmatrix}
= \begin{bmatrix}
I_2 & 0_2 & 0_2 & 0_2 \\
0_2 & I_2 & 0_2 & 0_2 \\
0_2 & 0_2 & I_2 & 0_2 \\
0_2 & 0_2 & 0_2 & I_2
\end{bmatrix}
\begin{bmatrix}
\delta \psi_m^E \\
\delta \psi_m^W \\
\delta r_m^E \\
\delta r_m^W
\end{bmatrix}
+ \begin{bmatrix}
\delta \psi_m^b_E \\
\delta \psi_m^b_W \\
\delta r_m^b_E \\
\delta r_m^b_W
\end{bmatrix}
$$

(3)

where $\Delta \psi_m^b$ is the attitude error measurement noise.

2.3. INS/GPS with reference trajectory navigation model

The third navigation solution tested is the INS/GPS with reference trajectory [23]. To perform this, the INS/GPS model, presented in section 2.1, is augmented to estimate the difference between the launcher and reference attitudes. The launcher may diverge from its reference attitude due to unpredictable forces. Wind gusts being the dominant one, it will be the only unpredictable force considered here. However, the model can be easily modified to include other forces. The wind is directly impacting the launcher dynamics tends to make the overall control and launcher dynamics constant. Therefore, the closed loop angular dynamics of the launcher can be approximated by a simple linear model. The navigation model is:

$$
\begin{bmatrix}
x(x(i+1)) \\
x(w(i+1))
\end{bmatrix}
= \begin{bmatrix}
A_{(i)} & 0_{18 \times 10} & A_{2\,(i)} & x_{(i)} \\
0_{18 \times 10} & A_{1\,(i)} & x_{w(i)}
\end{bmatrix}
+ \begin{bmatrix}
B_{(i)} & 0_{18 \times 1} & B_{1\,(i)} & \omega_{(i)}
\end{bmatrix}
\begin{bmatrix}
W_{(i)} \\
\omega_{(i)}
\end{bmatrix}
$$

(4)

$$
\begin{bmatrix}
Y_{(i)} \\
\Delta \psi_{ref(i)}
\end{bmatrix}
= \begin{bmatrix}
C_{(i)} & 0_{6 \times 10} & x_{(i)} \\
C_{1\,(i)} & C_{2\,(i)} & C_{3\,(i)}
\end{bmatrix}
+ \begin{bmatrix}
\nu_{(i)} \\
\nu_{(i)}
\end{bmatrix}
$$

(5)

where $0_{i,j}$ is a $i \times j$ zero matrix and:

$$
x_{(i+1)} = A_{(i)} x_{(i)} + B_{(i)} \omega_{(i)}
$$

is the compact version of equation (1) of the loosely coupled INS/GPS navigation model and:

$$
y_{(i)} = C_{(i)} x_{(i)} + \nu_{(i)}
$$

the corresponding model output compact version of equation (2). The vector:

$$
x_{(i)} = \begin{bmatrix}
x_{19\,(i)} \\
x_{20\,(i)} \\
x_{21\,(i)} \\
x_{22\,(i)} \\
x_{23\,(i)} \\
x_{24\,(i)} \\
x_{25\,(i)} \\
\Delta \psi_{ref\,(i)}
\end{bmatrix}
$$

represents the difference between the launcher and reference attitudes $\Delta \psi_{ref}$ and intermediate states x_{19}, x_{20}, x_{21}, x_{22}, x_{23}, x_{24} and x_{25} needed to compute it. The matrix:

$$
A_{2\,(i)} = s_i \begin{bmatrix}
0_{3 \times 2} & -I_3 \\
0_{3 \times 2} & 0_{3 \times 2} \\
0_{3 \times 2} & 0_{3 \times 2} \\
0_{3 \times 2} & 0_{3 \times 2}
\end{bmatrix}
$$

represents the closed loop angular dynamics of the launcher ([23]). The propagation of the loosely coupled attitude estimation error into the augmented model (i.e. how the attitude estimation error affects the launcher angular dynamics) is:

$$
A_{1\,(i)} = s_i \begin{bmatrix}
T^m_{(i)} & 0_{1 \times 15} \\
0_{7 \times 3} & 0_{7 \times 15}
\end{bmatrix}
$$
where $T^a_\mathbf{E}$ is the attitude rotation matrix from the Earth frame to the body frame. The matrix

$$B(1) = [x_{1,5} \hspace{1cm} I_3]$$

is the wind effect input matrix and $\theta_{w_{/y}}^i$ is the angular velocity created by the wind. The matrix:

$$[C(1) \hspace{1cm} C(2)] = [T^a_\mathbf{E} \hspace{1cm} 0_{3 \times 3} \hspace{1cm} 0_{3 \times 3} \hspace{1cm} I_3]$$

combines the loosely coupled attitude error $\Delta \Psi^a_\mathbf{E}$ and the difference between the launcher and reference attitudes $\Delta \Psi_{\text{ref}}^i$ to compute the difference between the navigation and reference attitudes $\Delta \Psi^a_\mathbf{E}$.

2.4. INS/GPS with attitude reference sensors and reference trajectory navigation model

The last solution uses the GPS, INS, attitude reference sensors and reference trajectory. As for the solution presented in section 2.2, the only modification needed is integrating the attitude error measurement in the loosely coupled navigation output:

$$\begin{bmatrix} y_{u2}^i \\ \Delta \Psi^a_{/y} \\ \Delta \Psi_{/y}^i \\ x_{u1} \end{bmatrix} = \begin{bmatrix} C_{u2}^i \\ C_{/y}^i \\ C_{/y}^i \end{bmatrix} \cdot \begin{bmatrix} x_{u1}^i \\ v_{u2}^i \end{bmatrix} + \begin{bmatrix} v_{u2}^i \end{bmatrix}$$

where:

$$y_{u2}^i = C_{u2}^i \cdot x_{u2}^i + v_{u2}^i$$

is the model output compact version of equation (3).

3. Methodology

The launcher simulator is provided by Defence Research and Development Canada. This non-linear simulator considers, among other things, the launcher flexion, the wind, and the aerodynamic coefficient which varies due to altitude, velocity and aerodynamic angles. The simulated mission is intended to put a satellite on a circular sun synchronous orbit at an altitude of 500 km. The launch is performed from Churchill, Manitoba in Canada. Only the endoatmospheric phase is evaluated. During this phase, two engines are fired. One during the first 109 s, and the second for the remaining time.

The specifications for the sensors are given in Table 1. The INS specifications are inspired by the IMU-KVH1750 unit from Novatel®. To simulate the higher grade sensors, the biases are simply set to 0. All other parameters are kept identical.

3.1. Observability matrix

Navigation models are varying only due to rotation matrices and acceleration undergone by the launcher. In the context of a satellite launcher, this variation is slow in comparison to the sampling rate, which is 200 Hz. The only exception is when a stage is jettisoned, which lasts for very short periods of time. Furthermore, the sampling rate of all sensors is synchronized with the simulation output. Therefore, most of the time, the model is changing very slightly between time steps. Considering this, testing the observability at each time step with a piecewise constant model is considered sufficient to evaluate the observability of the navigation models.

The observability is often evaluated using the rank of the observability matrix. Based on the following state space model:

$$x_{k+1} = A_{k} \cdot x_{k} + B_{k} \cdot u_{k}$$

$$y_{k} = C_{k} \cdot x_{k}$$

where x is the state vector, u is the input vector, y is the output vector and A, B and C are respectively the state, input and output matrices, the observability can be determined by the rank of the observability matrix. The model is locally observable, if the following condition is verified [39,43]:

$$\text{rank} \begin{bmatrix} C_k \\ C_{k+1} \cdot A_k \\ \vdots \\ C_{k+i-k} \cdot A_{k+i-2} \cdot A_{k+i-3} \cdot \ldots \cdot A_{k+i-2} \end{bmatrix} = n$$

where n is the length of the state vector. Otherwise, if the rank is lower than the size of the state vector, the system is considered as having a non-observable subspace. To be completely observable, the navigation model must be locally observable for each time steps [39,44]. However, it is delicate to conclude on the complete observability based on local observability [41]. But, having states updated with measurements at each time steps can prevent the estimate errors from growing unbounded [15]. Therefore, only the states which are locally observable all through the mission will be considered as observable.

The evaluation of the observability matrix condition number gives a better insight of the observability. It allows detecting a possible near singular observability matrix, which could be considered as full rank otherwise. The condition number gives a rough estimate of the digital precision loss. A condition number over 10^{10} is considered unacceptable when using double precision variables on a personal computer [37]. The condition number evolves within a simulation, therefore only the maximum value is used. This represents the situation where the navigation is most likely to have an observability weakness.

All navigation solutions are tested with sensor biases represented as Markov processes and random walks. Since Markov process time constants are of the same order of magnitude as the mission time, ignoring them can have a limited impact on estimated standard deviations. For each navigation solution, different combinations of biases are tested to allow detecting which ones are observable. The number of unobservable states detected by the rank of the observability matrix and the condition numbers of the observability matrix are given for each configuration.

3.2. Covariance time evolution analysis

The evolution of the Kalman filter covariance matrix gives information on how estimate uncertainties evolve. Comparing the results obtained with different navigation solutions allows determining the effects of navigation models and aiding sensors. The standard deviation of an estimate that similarly evolves with different models indicates that the corresponding parameters can be omitted (i.e. modelling sensor biases as random walks instead of Markov processes). However, as it will be shown in section 4.1, neglecting terms may affect the rank of the observability matrix.

The observability analysis is defined as determining whether the state vector can be inferred from measurements [15]. Comparing the navigation solutions with different aiding sensors indicates the amount of information provided by the corresponding sensors. Navigation with only an INS is used as a baseline to assess the information provided by aiding.

<table>
<thead>
<tr>
<th>Sensor specifications</th>
<th>C/A code with wide correlator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyroscope random walk</td>
<td>0.72 $/\sqrt{Hz}$</td>
</tr>
<tr>
<td>Gyroscope bias stability</td>
<td>0.05 $/Hz$</td>
</tr>
<tr>
<td>Accelerometer random walk</td>
<td>117 $\mu g/\sqrt{Hz}$</td>
</tr>
<tr>
<td>Accelerometer bias stability</td>
<td>7500 μg</td>
</tr>
<tr>
<td>Attitude reference sensor noise standard deviation</td>
<td>1 $^\circ$</td>
</tr>
</tbody>
</table>

Table 1
sensors. Its standard deviations are obtained by propagating the covariance matrix based on equation (1). Then, combination of sensors are compared to determine the relative effect of each aiding sensor. In these cases, the standard deviations are extracted from the navigation Kalman filter covariance matrix.

The covariance matrix can be exploited to evaluate the correlation between states. A high correlation coefficient does not automatically indicate a problem. However, it may point out a potential observability issue [36]. For example, if two perfectly correlated states \((x_1 = x_2) \) are subtracted in the output equation \((y = x_1 - x_2) \), it is impossible to determine their values just by looking at the corresponding output \((y = 0) \). But, if they are added \((y = x_1 + x_2) \), then their values can be calculated \((x_1 = x_2 = y/2) \).

The results obtained with the Kalman filter might be validated using Monte-Carlo simulations. But, if these tests are done without taking into account faulty sensors, the variances obtained with Monte-Carlo simulations can match the theoretical values of the Kalman filter, and that, even if the navigation model has observability weaknesses. Therefore, sensitivity tests are performed by verifying the ability of navigation solutions to correct errors caused by measurement outliers. For example, testing the ability of the navigation filter to correct the effect of a GPS velocity measurement outlier on the GPS position bias estimation (section 4.2.2). In order to compare the behaviour of the navigation filter before and after outliers, these are added at the 50th second of simulation. The choice of the 50th second is also motivated by the fact that it gives enough time for the navigation filter to correct the effect of outliers if the model is observable.

<table>
<thead>
<tr>
<th>Estimated values</th>
<th>Unobservable states</th>
<th>Condition number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyroscope bias</td>
<td>No bias</td>
<td>No bias</td>
</tr>
<tr>
<td>Accelrometer bias</td>
<td>Markov process biases</td>
<td>Markov process biases</td>
</tr>
<tr>
<td>GPS position bias</td>
<td>Random walk biases</td>
<td>Random walk biases</td>
</tr>
<tr>
<td>Reference attitude divergence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of states</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INS/GPS</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2

Observability vs estimated states. (Shaded values indicate incomplete observability).

<table>
<thead>
<tr>
<th>INS/GPS/Reference trajectory</th>
<th>Estimated values</th>
<th>Unobservable states</th>
<th>Condition number</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/ Attitude reference sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X X X</td>
<td>19</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>X X X</td>
<td>22</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>X X X</td>
<td>25</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>X X X</td>
<td>28</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

4. Result analysis

Navigation models are first evaluated, in section 4.1, using the observability matrix. Section 4.2 verifies the observability with the help of the time evolution of the estimate covariance matrix, the analysis of the correlation between states, and sensitivity to measurement outlier tests.

4.1. Observability using observability matrix

For all configurations, the observability matrix has been evaluated for each time step. Tests showed that the rank of the observability matrix does not change during the mission. The results are summarized in Table 2. Since they are always present, attitude, velocity and position errors are not represented in the table.

When considering the biases as Markov processes, the rank of the observability matrix reveals that all navigation solutions are observable. However, when the sensor biases are modelled as random walks, the estimation of the GPS position bias leads to an unobservable subspace for all navigation solutions. Even if the GPS position bias model has an impact on the rank of the observability matrix, the effect on estimates is negligible (see section 4.2).

The condition number of the observability matrix confirms the results obtained with the rank of the observability matrix. Considering sensor biases as random walks or Markov processes drastically change the order of the condition number when the GPS position bias is estimated (Table 2). In all cases where the rank of the observability matrix reveals an unobservable subspace, the condition number value is at least 10^{17}, otherwise the condition number does not exceed 10^5. As stated in section 3.1, a condition number over 10^{10} is a clear indication of a bad conditioning. Therefore, from the observability matrix rank and condition number standpoint, modelling biases as random walks or Markov processes have an impact on the observability.

On solutions where the reference trajectory is not used and GPS bias is not estimated, the addition of attitude reference sensors reduces the value of the condition number, which can indicate an improved observability. However, on navigation solutions where the reference trajectory is exploited, the addition of attitude reference sensors has no effect on the condition number. However, as it will be shown in sections 4.2.3 and 4.2.4, the attitude reference sensors improve the observability either if the reference trajectory is used or not.

The analysis of equation (2) shows that the position error and the GPS bias are not affecting other states within the state vector. For the solutions where the reference trajectory is used (equation (4)), only the attitude error $\delta \Psi_E$ is affecting the vector x_Ψ through the matrix A_1. Considering that δr_E and b_E^g are not affecting other states, their observability can be analyzed with a simplified model.

From equation (1), the propagation of the position error and the GPS position bias is:

$$
\begin{bmatrix}
\Delta r_E^{(k+1)} \\
\Delta b_E^{(k+1)}
\end{bmatrix} =
\begin{bmatrix}
0_3 & 0_3 \\
0_3 & \frac{1}{c_p}
\end{bmatrix}
\begin{bmatrix}
\Delta r_E^{(k)} \\
\Delta b_E^{(k)}
\end{bmatrix} +
\begin{bmatrix}
0_3 \\
\frac{1}{c_p}
\end{bmatrix}
\Delta \delta r_E^{(k)}
\begin{bmatrix}
\Delta r_E^{(k)} \\
\Delta b_E^{(k)}
\end{bmatrix}
$$

and based on equation (2), the corresponding output equation is:

$$
\begin{bmatrix}
\Delta r_{m(k)}^{(k)} \\
\Delta b_{m(k)}^{(k)}
\end{bmatrix} =
\begin{bmatrix}
I_3 & I_3 \\
I_3 & I_3
\end{bmatrix}
\begin{bmatrix}
\Delta r_E^{(k)} \\
\Delta b_E^{(k)}
\end{bmatrix} +
\begin{bmatrix}
\Delta r_{m(k)}^{(k)} \\
\Delta b_{m(k)}^{(k)}
\end{bmatrix}
$$

which gives the following observability matrix:

$$
\begin{bmatrix}
I_3 & I_3 \\
I_3 & I_3
\end{bmatrix}
$$

The observability matrix is full rank only if $c_p \neq 0$, and the condition number of the simplified model observability matrix is proportional to c_p, as presented in Fig. 1. The limit case when $c_p \to \infty$, is equivalent to model the bias as a random walk. Therefore, weak observability problems should be expected as c_p increases. It should be noted that for the studied mission, c_p is within the same range as the mission time. In this case, the Markov process is close to a random walk, which can lead to observability weaknesses.

4.2. Observability using the time evolution of the covariance matrix

4.2.1. Observability analysis using INS/GPS

To begin, the observability of the INS/GPS solution with none of the biases estimated is analyzed. In section 4.1, the rank of the observability matrix indicates that all states are observable and the order of the condition number, which is 3, can be considered small [37]. Therefore, from the observability matrix standpoint, no observability problems should be expected. But, as already mentioned in Ref. [23], it can be seen from Fig. 2 that GPS measurements barely improve the roll error estimate. Even with ideal GPS measurements ($\Delta r_{m}^E = 0_{3x1}$ and $\Delta r_{m}^B = 0_{3x1}$ in equation (2)), the estimated roll error standard deviation is within the same range as when the INS is used alone (Fig. 2). It is demonstrated that the attitude error parallel to the acceleration is unobservable [12,13]. If the launcher is moving in a perfect straight line solely in the forward direction, any rotation about the body frame roll axis leads to the same velocity and position measurements. Therefore, a roll estimation error cannot be detected using the GPS measurement unless the launcher undergoes lateral acceleration. Theoretically, from equation (1) the propagation of the velocity estimation error is:

$$
\delta r_E^{(k)} = \delta r_E^{(k-1)} + s_1 \left(\mathbf{T}_E \mathbf{d}_B^{(k)} \times \delta \mathbf{w}_E^{(k)} - 2 \omega_E^{(k)} \times \delta \mathbf{v}_E^{(k)} + \mathbf{T}_E \mathbf{b}_E^{(k)} \right)
\begin{bmatrix}
\Delta r_{m(k)}^{(k)} \\
\Delta b_{m(k)}^{(k)}
\end{bmatrix}
$$

Only considering the terms related to the propagation of the attitude errors are not represented in the table.
estimation error into the velocity estimation error gives:

\[
\delta v_{e(k+1)}^E = \delta v_{e(k)}^E + s_t T_{e(k)}^E a_{m(k)}^B \times \delta \Psi_{e(k)}^E + \ldots
\]

which represented in the body frame is:

\[
\delta v_{e(k+1)}^B = \delta v_{e(k)}^B + s_t a_{m(k)}^B \times \delta \Psi_{e(k)}^B + \ldots
\]

with:

\[
da_{m(k)}^B \times = \begin{bmatrix}
0 & -a_{z}^B & a_{x}^B \\
-a_{z}^B & 0 & -a_{y}^B \\
-a_{z}^B & -a_{y}^B & 0
\end{bmatrix}
\]

where \(a_{x}^B, a_{y}^B\) and \(a_{z}^B\) are the individual components of the body frame acceleration vector. If the lateral acceleration is null (i.e. \(a_{y}^B = 0\) and \(a_{z}^B = 0\)) the first component of \(\delta v_{e(k)}^B\), which is the body frame roll estimation error, is not propagated into the velocity estimation error. Considering that the launcher lateral acceleration is almost null, the roll estimation error has little impact on the velocity estimation error. The position estimation error is also barely affected, since computed from the velocity estimation error. Therefore, the roll estimation error is weakly observable and additional sensors are needed to ensure proper observability of all states.

4.2.2. Observability analysis using INS/GPS with attitude reference sensors

The second approach analyzed is the INS/GPS with attitude reference sensors. The theoretical analysis of the observability matrix in section 4.1 demonstrates that an observability problem occurs when the GPS position bias is modelled as a random walk. However, the evolution of the covariance matrix shows that standard deviations of the GPS position bias are greatly reduced by the use of aiding sensors (Fig. 5). In fact, the space mission flight time is short and biases do not grow to the point where their estimation can benefit from attitude reference sensor measurements. But, as the quality of gyroscopes becomes lower, the improvement provided by aiding sensors becomes obvious, as it can be seen in Fig. 6, where the gyroscope bias stability specification is multiplied by 1000. Also, the effect of sensor bias models becomes less evident. This highlights the importance of considering the observability analysis along with the relative precision of sensors.

4.2.3. Observability analysis using INS/GPS with and without reference trajectory

The next test compares the INS/GPS solutions with and without the reference trajectory as additional information. Fig. 7 shows that the standard deviation of the roll estimate error is greatly reduced by the error measurement noise adjusted accordingly.

Considering biases as Markov processes or random walks has a negligible impact on estimated standard deviations of accelerometer and GPS position biases. However, gyroscope bias standard deviations are greatly affected (Fig. 5). It should be noted that sensor biases are modelled by Markov processes for the navigation with only the INS, which explains why it outperforms the INS/GPS solution with biases modelled by random walks.

In view of these results, one might think that gyroscope biases are unobservable. Strictly speaking, this is not an observability problem. However, the effect on the estimates is similar. Even on a fully observable model, the ability of correcting estimates can be affected by sensor noises [40]. In fact, the space mission flight time is short and biases do not grow to the point where their estimation can benefit from attitude reference sensor measurements. But, as the quality of gyroscopes becomes lower, the improvement provided by aiding sensors becomes obvious, as it can be seen in Fig. 6, where the gyroscope bias stability specification is multiplied by 1000. Also, the effect of sensor bias models becomes less evident. This highlights the importance of considering the observability analysis along with the relative precision of sensors.
addition of the reference trajectory. However, all the other estimations are not improved. Even if the roll estimation is better, the observability problem of the INS/GPS solution is still present when the reference trajectory is used. If an outlier is added to roll rate measurements (0.002 rad/s at the 50th second), both solutions exhibit a static error on the roll error estimate (Fig. 8). The solution which makes use of the reference trajectory could be affected by an outlier on the reference trajectory data too. Fig. 9 presents the effect of a 0.002 rad/s outlier on the reference roll value at the 50th second. Obviously, the solution which does not use the reference trajectory data is unaffected.

An analysis of the correlation between states for the INS/GPS solution with the reference trajectory reveals a near perfect negative correlation between attitude estimation error and launcher divergence from the reference attitude when both are represented in the same reference frame. Fig. 10 shows the time evolution of the correlation coefficients during the first 5 s of the mission. This is due to the fact that the effect of the wind on the rotational motion of the launcher is low. Therefore, the launcher divergence from its reference attitude is mainly caused by the attitude estimation error. Also, the rotational dynamics of the launcher is faster than the evolution of the attitude estimation error, hence during normal operation $T^{{\text{E}}}_{E(k)}\delta \Psi^{{\text{E}}}_{e(k)} \approx -\delta \Psi^{{\text{E}}}_{\text{ref}(k)}$. In equation (5), these two values are added:

$$\Delta \Psi^{{\text{E}}}_{\text{ref}(k)} = T^{{\text{E}}}_{E(k)}\delta \Psi^{{\text{E}}}_{e(k)} + \delta \Psi^{{\text{E}}}_{\text{ref}(k)} \quad \text{(8)}$$

consequently:
solution suffers from structural unobservability [36].

To explain the fast change of attitude error estimates at the moment of the outlier, it should be noted that the difference between the navigation and the reference attitude is perfectly known. Therefore, the value of $\Delta \Psi^B_{\text{ref}}$ change instantaneously due to the outlier. The presence of equation (8) in the Kalman filter measurement of residual makes corrections be applied to $\delta \Psi^E_{\text{e}}$ and $\delta \Psi^B_{\text{ref}}$. But, since components in the body roll axis of $\delta \Psi^E_{\text{e}}$ and $\delta \Psi^B_{\text{ref}}$ are weakly observable, both values do not necessarily converge to the real values.

The use of the reference trajectory reduces the roll estimation error. However, this approach does not improve the observability and can be sensitive to outliers within the reference trajectory data. Consequently, the uses of the reference trajectory cannot be recommended when exploited with only an INS and a GPS.

4.2.4. Observability analysis using INS/GPS/attitude reference sensors with and without reference trajectory

The last test compares the INS/GPS/attitude reference sensor solutions with and without the reference trajectory. As when no attitude sensors are present (section 4.2.3), only the roll estimation is improved with the help of the reference trajectory as additional information. Fig. 11 shows that the roll estimation with attitude reference sensors can be improved with the help of the reference trajectory. When adding a 0.002 rad/s gyroscope outlier on the roll rate at the 50th second of the simulation, both solutions are able to correct the roll error estimation.

Even if both approaches are able to correct the effect of the outlier within the same time range, the one exploiting the reference trajectory initially captures the effect faster, but is then slower to correct it. Again, this is due to the near perfect negative correlation between the attitude error estimates and the estimation of the gap between launcher and reference attitudes. As shown in section 4.2.3, at the exact moment of the outlier occurrence, the reference trajectory data helps to rectify the attitude estimation. But after that, the negative correlation makes the attitude estimation error (Fig. 12) and difference between launcher and reference attitude (Fig. 13) to be underestimated. However, unlike the previous solution (section 4.2.3), attitude reference sensors provide the needed measurements to overcome the structural unobservability problem. Consequently, the uses of the reference trajectory to reduce the roll estimation error can be recommended when attitude reference sensors are present.

As stated in section 4.1, the improved observability provided by attitude reference sensors to the solution which exploit the reference trajectory is not revealed by the rank and condition number of the observability matrix. This highlights the importance of not relying solely on the observability matrix to assess the observability of a model.

5. Conclusion

In this paper the observability of four navigation solutions for a satellite launcher is evaluated. For each navigation solution, three different sensor error models are tested. First, it is demonstrated that one could not
rely solely on the rank of the observability matrix to assess the observability. The analysis of the condition number of the observability matrix gives a better insight of the observability and helps to detect a near singular observability matrix. The covariance time matrix evolution allows determining the contribution of aiding sensors to reduce INS estimation errors. Therefore, it delivers precise information on possible weak observability. The analysis of the correlation between states may also reveal structural unobservability. However, in some cases, a sensitivity analysis is required to detect observability problems.

In the context of a satellite launcher, the results show that:

- None of the suggested navigation solutions provide GPS position bias observability. Consequently, this bias should be removed from the navigation model and its effect considered within the position error measurement noise.
- Roll estimation error and gyroscope bias are only observable if attitude reference sensors are present. Therefore, the addition of these sensors is recommended.
- Relying on the reference trajectory data into the navigation solution does not improve the observability. However, it allows reducing the standard deviation of the roll estimation, which makes this approach interesting when combined with attitude reference sensors.
- Modelling biases as Markov processes or random walks is barely affecting the navigation performances. Therefore, for the studied cases, both models can be used for the gyroscope and accelerometer biases.
- The observability may be affected by the quality of the sensors through the choice of sensor error models. But the relative precision of sensors should also be taken into account. In fact, if INS aiding sensors do not provide accurate enough measurements, the results attained can be similar to those without aiding sensors. Strictly speaking, the inability of correcting estimates within the mission time is not an unobservability problem, but it creates similar behaviours.

A next step could be to simplify the navigation solution which makes use of the reference trajectory to consider only the divergence of the launcher from its reference trajectory into the body roll axis. This change should not affect the improvement provided by this approach, but it will reduce the amount of data needed and the computational load.

Acknowledgements

This work was supported by Aerex avionique inc. (417749), the Natural Science and Engineering Research Council of Canada (164522) and the Fonds de recherche sur la nature et les technologies.

References

Yanick Beaudoin is a Ph.D. student at Université Laval, Quebec City, Canada. He completed his Bachelor in 2009 and his Master in 2012, both in electrical engineering at Université Laval. His research interest is the navigation of satellite launchers.

Eric Gagnon received B.E. and Ph.D. degrees in electrical engineering from Université Laval, Quebec City (Canada), in 1991 and 1999, respectively. He worked for three years as an electrical engineer in the R&D industry, seven years as a research professional in academia and fifteen years as a defense scientist at Defence Research and Development Canada. He is specialized in guidance, navigation and control of weapons.

André Desbiens is a Professor at the Department of Electrical and Computer Engineering at Université Laval, Quebec City, Canada. He has been a faculty member since 1995. He completed his Ph.D. (Electrical Engineering) in 1995 and his undergraduate studies (Engineering Physics) in 1988, both at Université Laval. His research interests lie in the area of guidance, navigation and control and also in industrial process control and real-time optimization.

René Jr Landry received an electrical engineering degree at École Polytechnique of Montreal in 1992, a Master of Science in Satellite Communication engineering in 1993, a DEA in microwave in 1994 and a Ph.D. in GNSS anti-jamming at SupAero in 1998. Since 1999, he is professor at the department of electrical engineering at École de Technologie Supérieure (ETS), and the director of LASSENA laboratory. His expertise in embedded systems, navigation and avionic is applied notably in the field of transport, aeronautic, and space technologies.