
A Simple F –Test Based Spectrum Sensing
Technique for MIMO Cognitive Radio Networks

Tilahun M. Getu†‡, Wessam Ajib‡, and René Jr. Landry†

†École de Technologie Supérieure (ÉTS), Montréal, QC, Canada
‡Université du Québec à Montréal (UQÀM), Montréal, QC, Canada

tilahun-melkamu.getu.1@ens.etsmtl.ca, ajib.wessam@uqam.ca, and renejr.landry@etsmtl.ca

Abstract—An F –test detector with a simple analytical false
alarm threshold expression is considered an alternative to the
blind detectors which exhibit complicated analytical expressions.
Proposed for a single-input multiple-output (SIMO) systems,
the existing F –test requires the channel state information (CSI)
as a prior knowledge. On the contrary, the CSI requirement
renders a sensitivity to a CSI estimation error and multiple-input
multiple-output (MIMO) systems guarantee better array gain,
spatial diversity gain, spatial multiplexing gain, and interference
reduction than SIMO systems. Accordingly, we present and
evaluate the performance of a simple F –test based spectrum
sensing technique that doesn’t require the knowledge of the CSI
for the MIMO cognitive radio networks. For this detector, exact
and asymptotic analytical performance closed-form expressions
are derived. Simulations assess the performance of the presented
detector and validate the derived closed-form expressions.

Index Terms—Cognitive radio, F –test, SIMO systems, MIMO
systems, cognitive radio networks.

I. INTRODUCTION

A. Related Works

In order to overcome the discrepancy between spectrum
scarcity—which is getting aggravated by an ever-increasing
demand for higher data rates—and spectrum underutilization,
cognitive radio (CR) has emerged as a promising technol-
ogy. As an enabler to this technology which underpins a
vision regarding spectrum sharing, spectrum sharing tech-
niques named as spectrum underlay and spectrum overlay

have been proposed [1], [2]. While respecting the interference
threshold of a primary user (PU), a secondary user (SU)
employing a spectrum underlay scheme is allowed to transmit
on the licensed band of a PU [2]. Whereas, SUs deploying
a spectrum overlay scheme transmit after locating spectrum

holes, licensed to PUs, until a primary transmission is con-
ducted on them [2], [3]. Being not in constant use in both
the licensed and unlicensed bands, spectrum holes exist as
temporary space–time–frequency voids [4]. The detection of
these voids is known as spectrum sensing and hence the heart
of communication systems that are based on CRs. Having
attracted the attention of numerous researchers, a significant
number of spectrum sensing techniques have been proposed
over the years. Till recently, these techniques have been widely
classified as narrowband sensing and wideband sensing tech-
niques [5]–[7]. Upon the advent of active sensing techniques
[8]–[10], a broader classification was reported recently. As per

the very recent classification, spectrum sensing techniques can
be classified as active sensing [8]–[10] and quiet sensing [2],
[5]–[7], [11], [12].

To begin with, quiet sensing is performed by a SU which
senses the channel for a fixed time-duration [8] and trans-
mits afterward provided that the primary channel is idle. To
overcome the capacity reduction due to quiet periods which
are usually short to provide adequate samples for an accurate
spectrum sensing [8], [9], and to surmount an extra burden
of synchronization for the quiet periods [10] (for instance,
the one needed in IEEE 802.22 intra-frame sensing [13]),
active sensing has emerged as a promising spectrum sensing
paradigm. In particular, the authors of [10] have proposed
quiet-active sensing scheme by using inactive SUs which
sense the channels in both quiet and active periods. At the
cost of quiet-period synchronization [10], the advantage of
this scheme over quiet sensing emanates from the additional
samples obtained during the active period. To overcome the
synchronization requirement of quiet-active sensing, the same
authors have proposed an active sensing scheme—dubbed
optimized active sensing—by placing quiet samples in the
frequency domain so that selection diversity would be achieved
[10]. On the contrary, the schemes of [10] require more
spectrum resources and extra power resources are required
because of the signaling overhead, and sensing of the primary
signal and transmission of the sensing information to the active
SU, respectively [8], [9].

Capitalizing on the three-port antenna based spatial filtering
technique of [14], the authors of [9] have introduced a simul-
taneous sensing and data transmission technique by deploying
a spatial isolation technique on the antennas of each cognitive
node. Relying on the self-interference cancellation technique,
the proposed scheme divides the spatial resources so that some
antennas are devoted for spectrum sensing while others for
data transmission [8]. Nevertheless, this very technique suffers
from large self-interference produced during spectrum sensing
and an appropriate physical distance should be maintained
between the sensing and transmitting antennas [8]. To alleviate
these issues, [8] is the latest advancement which has inves-
tigated a distributed multiple-input multiple-output (MIMO)
CR-based system operating in the presence of multiple PUs. In
particular, the paper proposes a communication protocol made
of training, data transmission, and spectrum sensing phases
which alternate periodically. After the introductory training
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phase, the paper assumes a spectrum sensing per every symbol
duration prior to a transmission by the secondary nodes, and
a joint minimum mean squared error detection and an energy
detection based spectrum sensing. Hence, whenever a hidden

terminal problem [7], [11] arises, the aforementioned protocol
will keep on conducting a secondary transmission and emitting
interference to a primary receiver which may not be blocked,
unlike the blocked primary transmitter. To reliably detect a
hidden primary terminal’s signal exhibiting a very low signal-
to-noise ratio (SNR), robust quiet spectrum sensing techniques
are, thus, required. These techniques, as mentioned, can be
either narrowband or wideband techniques.

As per the bandwidth of the signal to be detected, quiet
spectrum sensing techniques can be narrowband or wideband

[6], [15]–[17]. The wideband techniques can be Nyquist based
or sub-Nyquist based depending on the adopted sampling rate
[5], [16]. Sub-Nyquist sampling techniques usually deploy
either compressive sampling [18] or multi-coset sampling [19].
On the other hand, Nyquist based wideband sensing techniques
are based on either fast Fourier transforms [20], wavelets
[21], or filter-banks [22]. Delving into narrowband sensing,
several narrowband spectrum sensing techniques have been
proposed over the years [2], [5], [6], [11]. The conventional
ones are energy detection (ED) [23]–[25], matched filtering
[26], feature-based detection [27], polarization detection [28],
sample covariance matrix (SCM) based algorithms [29]–[32],
moment ratio detection [33], and max-min detection [34],
[35]. Nevertheless, ED relies on the known power spectral
density of the noise and exhibits a high sensitivity to noise
uncertainty [2], [11] leading to a poor performance at a low
SNR regardless of the number of intercepted samples, as
demonstrated via SNR walls [36]; matched filters suffer from
intrinsic computational complexity and hence are unattractive
for practical spectrum sensing applications; particular fea-
tures need to be introduced to deploy feature detectors in
OFDM-based communications [2]; polarization detectors are
computationally complex and sensitive to estimation errors
[28]; SCM-based techniques suffer from performance loss
under sample-starved settings—despite their blindness—and
their asymptotic threshold differs considerably from the exact
value for finite sensors and samples, as attested by [29]; a
moment ratio detection is computationally complex and relies
on the asymptotic Gaussian distribution; and max-min detector
suffer from huge computational complexity.

B. Motivation

Apart from the highlighted conventional algorithms, some
other algorithms such as Bartlett estimate-based energy detec-
tion [37], a frequency domain eigenvalue-based spectrum sens-
ing algorithms [38], subband energy-based spectrum sensing
algorithm [39], energy detection spectrum sensing under RF
imperfections and with multiple PUs [40], [41], and a robust
estimator-correlator and a robust generalized likelihood detec-
tors [42] have been proposed. However, all these important
contributions are less attractive for practical CR applications
since they rely on the complex Gaussian distributed primary

signal. Recently, the F –test (FT) based spectrum sensing
technique was proposed in [43] and corroborated to be superior
over an energy detector, a maximum-minimum eigenvalue
(MME) detector [30], and a generalized likelihood ratio test
(GLRT) detector [44], [45], especially at low SNR. While
exhibiting a moderate computational complexity, this detector
is also robust against noise uncertainty and independent of
noise power. However, it requires a prior knowledge of the
channel state information (CSI) between the primary trans-
mitter and secondary receiver rendering it susceptible to CSI
estimation errors. Moreover, the FT detector of [43] assume
a single-antenna primary transmitter which is not necessarily
the case for the transmitters of the fourth generation (4G)
and 5G era, as they are usually equipped with a massive
number of antennas for the sake of array gain, spatial diversity
gain, spatial multiplexing gain, and interference reduction [46].
Consequently, a robust and computationally simple spectrum
sensing technique applicable to a MIMO CR network is
crucial.

C. Contributions

Inspired by the FT detector of [43], [47] disseminates the
modified versions of [43] which do not require the knowl-
edge of CSI nor the noise power. These modified detectors
were proposed for a single-input multiple-output (SIMO) CR
network and a generalization to a MIMO CR network was
also highlighted in [47]. Following the lead of [47], for
a multi-antenna spectrum sensing over frequency selective
channels, this paper presents—in detail—a detector named the
MIMO CR generalized F –test via singular value decomposi-
tion (MIMO CR g-FT-v-SVD). This detector is applicable for
the MIMO cognitive radio network and the contributions of
this paper are itemized below.

• By deploying the estimation theory of a population co-
variance matrix (PCM) and different F –distributions, the
exact and asymptotic performance analyses of the MIMO
CR g-FT-v-SVD are presented.

• The performance of the MIMO CR g-FT-v-SVD is as-
sessed through several Monte-Carlo simulations which
also validate the derived analytical expressions.

Following this introduction, Sec. II presents the system model.
Sec. III details the MIMO CR g-FT-v-SVD algorithm whose
performance analyses are detailed in Sec. IV along with
Appendices A and B. Sec. V reports the simulation results
leading to paper conclusions drawn in Sec. VI.

Notation: Scalars, vectors, and matrices are denoted by italic
letters, lower-case boldface letters, and upper-case boldface
letters, respectively; ∼, ∝, || · ||, CNR , and H

NR×NR mean
distributed as, statistically equivalent, the Euclidean norm,
the sets of NR–dimensional vectors of complex numbers,
and of NR × NR Hermitian matrices, respectively; lim, (·)T ,
(·)H , E{·}, Pr{·}, and CN NR

(0, Σ) stand for limit, transpose,
Hermitian, expectation, the probability of, and a zero mean
circularly symmetric complex additive white Gaussian noise
(AWGN) with a covariance matrix of Σ ∈ H

NR×NR , respec-
tively; tr(·), diag(·), A(:, j), A(:, i : j), and INRW denote
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Fig. 1. The MIMO CR g-FT-v-SVD detector for (ν1, ν2) =
(

2Nr, 2N(NRW − r)
)

and r = NT (W + L).

trace, diagonal (block diagonal) matrix, the jth column of A,
the columns of A between its ith and jth columns including
its ith and jth columns, and an NRW ×NRW identity matrix,
respectively; χ2, Fν1,ν2

, F ′
ν1,ν2

(λ1), and F ′′
ν1,ν2

(λ1, λ2) denote
the chi-square, the central F –distribution with (ν1, ν2) de-
grees of freedom (DoF), the singly non-central F –distribution
with (ν1, ν2) DoF and non-centrality parameter (NCP) λ1,
and the doubly non-central F –distribution with (ν1, ν2)
DoF and NCPs (λ1, λ2), respectively; and F (λ; ν1, ν2),
F ′(λ; ν1, ν2|λ1), and F ′′(λ; ν1, ν2|λ1, λ2) implicate the cu-
mulative distribution function (CDF) of Fν1,ν2

, the CDF
of F ′

ν1,ν2
(λ1), and the CDF of F ′′

ν1,ν2
(λ1, λ2), respectively,

evaluated at λ.

II. SYSTEM MODEL

Consider a MIMO CR network made of a primary trans-
mitter with NT antennas and a secondary receiver with NR

antennas. For an opportunistic transmission, the SU senses the
licensed band of a PU through a frequency selective channel
modeled as a finite-duration impulse response filter with L+1
taps. Toward this end, a binary hypothesis test is formulated
on the presence or absence of a primary signal. Based on
the system model in [48, Sec. II-A], the kth received and
sampled baseband signal y[k] ∈ C

NR is expressed via a binary
hypothesis test as

y[k] =

{

∑L

l=0 Hls[k − l] + z[k] : H1

z[k] : H0,
(1)

where H0 and H1 are, respectively, hypotheses regard-
ing the idleness and activeness of a PU; s[k] =
[

s1[k], s2[k], . . . , sNT
[k]

]T
∈ C

NT denotes the kth symbol
vector transmitted through NT transmit antennas for sj [k]
being the kth unknown and deterministic primary symbol
emitted by the jth primary antenna; Hl ∈ C

NR×NT comprises
the MIMO channel impulse responses corresponding to the
lth multi-path fading component; and z[k] ∼ CNNR

(0, Σ).

For σ2 being the noise power, we assume independent and

identically distributed (i.i.d.) noises such that Σ = σ2INR
.

III. THE MIMO CR G-FT-V-SVD: ALGORITHM

A. The Formulated F –test

Stacking the observations of the secondary antennas into a
highly structured vector with respect to (w.r.t.) the mth short
term interval (STI) gives

ym =

{

Hsm + zm : H1

zm : H0,
(2)

where ym ∈ C
NRW , sm =

[

sT
1m, sT

2m, . . . , sT
NT m

]T
∈

C
NT (W +L) for sjm =

[

sj [mW ], sj [mW − 1], . . . , sj [mW −

W − L + 1]
]T

∈ C
(W +L) [48], and H ∈ C

NRW ×NT (W +L)

is the MIMO filtering matrix—made of banded Toeplitz
matrices—as defined in [48, eqs. (3)-(5)], and zm ∼
CNNRW (0, σ2INRW ).

Employing (2), the corresponding SCM R̂yy ∈
C

NRW ×NRW is computed as

R̂yy =
1

N

N
∑

m=1

ymyH
m =

1

N
Y Y H , (3)

where N is the number of STIs and Y = [y1, y2, . . . , yN ].
From (2), the PCM under H1 becomes [48, eq. (6)]

Ryy = E
{

ymyH
m

}

= HRssHH + σ2INRW , (4)

where Rss = E
{

smsH
m

}

∈ C
r×r—r = NT (W +L)—denotes

the primary data correlation matrix which indicates an NRW ×
r dimensional primary signal subspace. Applying SVD to (3),

R̂yy = ÛΣ̂V̂ H = [Ûs Ûn]Σ̂V̂ H , (5)

where Ûs = Û(:, 1 : r) ∈ C
NRW ×r denotes the es-

timated subspace spanned by the eigenvectors correspond-
ing to the largest r eigenvalues, Ûn = Û(:, r + 1 :

2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)



NRW ) ∈ C
NRW ×(NRW −r) represents the estimated subspace

spanned by the eigenvectors corresponding to the remaining
NRW − r eigenvalues, and Σ̂ = diag

(

Σ̂s, Σ̂n

)

for Σ̂s =

diag
(

σ̂1, σ̂2, . . . , σ̂r

)

, Σ̂n = diag
(

σ̂r+1, σ̂r+2, . . . , σ̂NRW

)

,
and σ̂i being the ith singular value. To identify the primary
signal subspace under H1, meanwhile, we make these as-
sumptions similar to [48]: NT < NR, N ≥ NT (W + L),
NRW ≥ NT (W + L), and W > L.

Deploying (3) and a projection matrix P̂s ∈ C
NRW ×NRW

defined as P̂s = ÛsÛH
s , the MIMO CR g-FT-v-SVD test

statistic and decision rule are formulated as

T ,
ν2

ν1

tr(P̂sR̂yy)

tr
(

(INRW − P̂s)R̂yy

)

H1

R
H0

λ, (6)

where (ν1, ν2) =
(

2Nr, 2N(NRW − r)
)

are the DoF and λ
is the decision threshold. Meanwhile, the MIMO CR g-FT-v-
SVD detector is depicted in Fig. 1.

Remark 1: Unlike [43, eq. (5)], (6) is independent of the
knowledge of the CSI between the primary transmitter and the
secondary receiver.

B. Equivalent Test Statistic

To derive the equivalent MIMO CR g-FT-v-SVD test statis-
tic, we first note that the SCM is a Hermitian as well as a
positive semi-definite matrix. Hence, its eigenvalue decompo-
sition and SVD are identical and hence Û =

[

Ûs, Ûn

]

=

V̂ =
[

V̂s, V̂n

]

. To continue, substituting P̂s = ÛsÛH
s and

(5) into (6) gives

T =
NRW − r

r

tr(ÛsΣ̂sÛH
s )

tr
(

ÛnΣ̂nÛH
n

) (7a)

(a)
=

NRW − r

r

tr(ÛH
s ÛsΣ̂s)

tr
(

ÛH
n ÛnΣ̂n

) (7b)

(b)
=

NRW − r

r

tr(Σ̂s)

tr
(

Σ̂n

) =
NRW − r

r

∑r

i=1 σ̂i
∑NRW

i=r+1 σ̂i

, (7c)

where (a) follows for tr(AB) = tr(BA) [49] and (b) is true
for Û = [Ûs Ûn] is an orthonormal matrix. Hence, it can be
inferred from (7c) that

T ∝

∑r

i=1 σ̂i
∑NRW

i=r+1 σ̂i

. (8)

Remark 2: To reduce the computational complexity of the
MIMO CR g-FT-v-SVD detector, it can be implemented via
(8) as an eigenvalue detector.

IV. PERFORMANCE ANALYSES

Realizing that (6), respectively, admits a doubly non-central
F –distribution and a central F –distribution under H1 and
H0, the underneath exact analysis follows. By employing
the estimation theory of a PCM, an asymptotic performance
analysis of the MIMO CR g-FT-v-SVD also follows.

A. Exact Analysis

Substituting (2) into (3) and, in turn, into (6),

T |H1 =
ν2

ν1

F1|H1

F2|H1
, (9)

where F1|H1 =
∑N

m=1

(

Hsm + zm

)H
P̂s

(

Hsm + zm

)

and

F2|H1 =
∑N

m=1

(

Hsm + zm

)H(

INRW − P̂s

)(

Hsm + zm

)

.
As T |H1 is the ratio of two non-central χ2–distributed
random variables (RVs), T |H1 ∼ F ′′

ν1,ν2
(λH1

1 , λH1

2 ) [43],

where
(

λH1

1 , λH1

2

)

= 2
σ2

∑N

m=1

(∣

∣

∣

∣P̂sHsm

∣

∣

∣

∣

2
,
∣

∣

∣

∣

(

INRW −

P̂s

)

Hsm

∣

∣

∣

∣

2)

.
Similarly, the test statistic under H0 becomes

T |H0 =
ν2

ν1

F1|H0

F2|H0
, (10)

where F1|H0 =
∑N

k=1 zH
mP̂szm and F2|H0 =

∑N

m=1 zH
m(INRW − P̂s)zm. The right-hand side of (10) is a

ratio of two central χ2–distributed RVs. Thus, T |H0 ∼ Fν1,ν2

[43]. The exact Pf = Pr{T |H0 > λ} exhibited by the MIMO
CR g-FT-v-SVD becomes

Pf = 1 − Pr
{

T |H0 ≤ λ
}

= 1 − F
(

λ; ν1, ν2

)

. (11)

Similarly, the exact Pd for a given λ is computed as

Pd = Pr
{

T |H1 > λ
}

= 1 − Pr
{

T |H1 ≤ λ
}

. (12)

Since T |H1 ∼ F ′′
ν1,ν2

(λH1

1 , λH1

2 ), (12) simplifies to

Pd = 1 − F ′′
(

λ; ν1, ν2

∣

∣λH1

1 , λH1

2

)

. (13)

B. Asymptotic Analysis

For infinitely large samples, the estimation theory of a PCM
corroborates that the SCM perfectly approximates the PCM.
Accordingly, the asymptotic Pd w.r.t. N is characterized via
the following theorem.

Theorem 1:

lim
N→∞

Pd = 1 − F ′(λ; ν1, ν2|λH1), (14)

where λH1 = lim
N→∞

2

σ2

N
∑

m=1

∣

∣

∣

∣Hsm

∣

∣

∣

∣

2
. For γ̄∞

snr =

lim
N→∞

1

N

N
∑

m=1

∣

∣

∣

∣Hsm

∣

∣

∣

∣

2

NRWσ2
being the average SNR over an infi-

nite duration, lim
N→∞

Pd = 0 provided that λ > NRW −r
r

γ̄∞
snr.

Proof: Please refer to Appendix A.
Similarly, the PCM estimation theory is deployed to char-

acterize the exhibited asymptotic Pf which is stated beneath.
Corollary 1: Whenever λ > 0,

lim
N→∞

Pf = 0. (15)

Proof: Please see Appendix B.
Remark 3: As N → ∞, the MIMO CR g-FT-v-SVD

exhibits a null probability of false alarm.
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Simulation parameters Assigned value
(W, L) (3, 1)
(Ps, N) (10 W, 100)
No. of realizations 104

TABLE I
SIMULATION PARAMETERS UNLESS OTHERWISE MENTIONED.

V. SIMULATION RESULTS

Unless otherwise mentioned, this section provides Monte-
Carlo simulations and/or analytical performance assessments
of the MIMO CR g-FT-v-SVD by using the simulation param-
eters of Table I. We consider a quadrature phase shift keying
(QPSK) modulated primary signal, i.e, sj [k] =

√

Ps/2
[

sI
kj +

jsQ
kj

]

for Ps being the transmitted—through the jth transmit

antenna—primary power, {sI
k, sQ

k } ∈ {−1, 1} × {−1, 1}, and
1 ≤ j ≤ NT . Without loss of generality and similar to
[50], we assume that the elements of Hl exhibit the Gaussian
distribution with zero mean and unit variance, i.e., Hl(i, j) ∼
CN 1(0, 1), 0 ≤ l ≤ L, 1 ≤ i ≤ NR, and 1 ≤ j ≤ NT . For
the target false alarm rate (FAR) of 0.1, the corresponding
MIMO CR g-FT-v-SVD decision threshold λ is obtained via
the implementation—under H0—of the test statistic in (6)
followed by averaging over 106 realizations. The MIMO CR g-
FT-v-SVD is simulated via the test statistic in (6) for an SNR
defined as γsnr =

∣

∣

∣

∣Hsm

∣

∣

∣

∣

2
/NRWσ2. Moreover, the false

alarm plots are simulated by considering the samples of an
AWGN of power σ2 as an input. Hereinafter, the performance
comparison with the state-of-the-art, validation of the closed-
form expressions, and the FAR and complementary receiver
operating characteristics (ROC) curves are reported.

A. Performance Comparison with the State-of-the-Art

As almost all the state-of-the-art multi-antenna detectors
consider a PU equipped with a single antenna, we, first,
compare the performance of the MIMO CR g-FT-v-SVD
detector which assumes single transmitting antenna with the
state-of-the-art detectors. In this respect, Fig. 2 showcases the
detection performance of the state-of-the-art detectors with the
MIMO CR g-FT-v-SVD’s.
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MIMO CR g-FT-v-SVD

FT with PCSI [43]

GLRT [44], [45]

MME [30]

Fig. 2. Pd versus γsnr : (NR, NT ) = (5, 1), N = 300, and Pf = 0.1.

For the detection of a primary signal manifesting a very
low SNR, Fig. 2 showcases that the MIMO CR g-FT-v-
SVD improves both MME [30] and GLRT [44], [45]. The
performance improvement is attributed to the fact that the
performance of the MIMO CR g-FT-v-SVD depends on the
quality of the primary signal subspace estimates. Moreover, it
is corroborated by the same plot that the MIMO CR g-FT-v-
SVD—with no CSI—performs as good as FT [43] fed with a
perfect CSI (PCSI) for γsnr ≥ −10 dB. Such a performance
at low SNR regimes can alleviate the hidden terminal problem

[11] and serves the required SNR sensitivities for primary
signals defined by the IEEE 802.22 working group [51].
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MIMO CR g-FT-v-SVD: (NR, NT ) = (5, 1)

MIMO CR g-FT-v-SVD: (NR, NT ) = (5, 2)

MIMO CR g-FT-v-SVD: (NR, NT ) = (5, 3)

Fig. 3. Pd versus γsnr : Pf = 0.1.

W.r.t. the desired FAR of 0.1, Figs. 3 depicts the detection
performance of the MIMO CR g-FT-v-SVD. Specifically, it
showcases the detection performance of the MIMO CR g-
FT-v-SVD for different values of NT . As it is seen, the Pd

exhibited by the MIMO CR g-FT-v-SVD decreases with the
increment of NT . Such a performance loss is attributed to
the fact that a large NT results in a large primary signal
subspace—estimated via (5)—which is naturally estimated
poorly. In other words, the observed performance loss can
also be explained via an increase in interference emitted by
the neighboring transmitting antennas whenever NT increases.
Furthermore, Fig. 3 demonstrates that the MIMO CR g-FT-v-
SVD exhibits an attractive detection performance—regardless
of NT —for the low SNR regimes which are usually a bottle-
neck regarding the capacity of CR networks.

B. Validation of the Analytical Expressions

In order to validate the exact detection expression given by
(13), Fig. 4 depicts the Pd versus λ curves for γsnr ∈ {−5, 0}
dB. Here, it is to be noted that the approximations in [43,
eqs. (21) and (22)] were deployed to depict the numerical
results of (13). To continue, as observed in Fig. 4, the Monte-
Carlo simulation results and the numerical results of (13) are in
an overlap. Hence, the Monte-Carlo simulations validate (13).
Moreover, the derived exact detection and FAR expressions—
given by (11) and (13)—of the MIMO CR g-FT-v-SVD are

2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)



1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

P
r
o
b
a
b
il
it
y

o
f
d
e
te
c
ti
o
n

 

 

Simulation
Analytical (13)

Simulation
Analytical (13)

γ
snr

=−5 dB

γ
snr

=0 dB

Fig. 4. Pd versus λ: (NR, NT ) = (5, 2).

validated further via the complementary ROC (CROC) curve
depicted in Fig. 6.
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Fig. 5. Pf versus λ: 106 realizations.

C. The FAR and Complementary ROC Curves

To showcase the FAR and CROC exhibited by the MIMO
CR g-FT-v-SVD, Figs. 5 and 6 depict the FAR and the CROC
curves, respectively. To continue, Fig. 5 corroborates the Pf

versus λ curves—exhibited by the MIMO CR g-FT-v-SVD—
depicted for different (NR, NT ) values. As seen, the exhibited
FAR falls w.r.t. λ and increases w.r.t. NT . The former and latter
observations are, respectively, attributed to the fact that a larger
threshold renders a smaller ambiguity on the absence of the
primary signal and a larger NT results in a larger primary
subspace which is estimated—as discussed before—poorly.

The CROC manifested by the MIMO CR-g-FT-v-SVD is
depicted via Fig. 6. It, specifically, demonstrates the proba-
bility of miss (Pm)—simulated as Pm = 1 − Pd—versus Pf

characteristics exhibited by the MIMO CR-g-FT-v-SVD. As
it is evident from Fig. 6, the exhibited Pm decreases with

the increment of Pf and vice versa. Therefore, such a natural
trade-off is corroborated via Fig. 6 which also validates (11)
and (13).

10
−2

10
−1

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Probability of false alarm

P
r
o
b
a
b
il
it
y

o
f
m
is
s

 

 

Monte-Carlo: (NR, NT ) = (5, 1)

Analytical—(11) and (13): (NR, NT ) = (5, 1)

Fig. 6. The manifested CROC: γsnr = −15 dB.

VI. CONCLUSIONS

In order to overcome the discrepancy between spectrum
underutilization and spectrum scarcity, CR has emerged as
a promising technology. For the operation of such a radio
which employs an opportunistic spectrum access scheme, a
robust and computationally simple spectrum sensing is the
heart of its operation. In order to render a robust sensing,
the underlying technique shall not rely on the knowledge of
the noise power, the primary signal characteristics, or any type
of CSI. Accordingly, a simple F –test based spectrum sensing
technique named the MIMO CR g-FT-v-SVD—applicable for
MIMO CR networks—is presented in detail. To elucidate
the performance of the MIMO CR g-FT-v-SVD, exact and
asymptotic closed-form expressions are derived. At last, the
derived closed-form expressions are validated by the Monte-
Carlo simulations which also corroborate the performance of
the MIMO CR g-FT-v-SVD.

APPENDIX A
PROOF OF THEOREM 1

As N → ∞, the PCM under H1 and its SVD are,
respectively, given by Ryy = E{HsmsH

mHH} + σ2INRW

and
Ryy = UΣV H = [Us Un]Σ[Vs Vn]H , (16)

where Us = U(:, 1 : r) is the true primary signal subspace,
Un = U(:, r + 1 : NRW ) is the true noise subspace, and
Σ = diag

(

Σs, Σn

)

for Σs = diag
(

σ1, σ1, . . . , σr

)

, Σn =
diag

(

σr+1, σr+2, . . . , σNRW

)

, and σ1 ≥ σ2 ≥ . . . ≥ σNRW .
As N → ∞, the SOI and noise subspaces are perfectly
estimated. Hence, we can infer that

E{HsmsH
mHH} = UsΣsV H

s (17a)

σ2INRW = UnΣnV H
n . (17b)
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As N → ∞, the SCM perfectly estimates the PCM, i.e.,
lim

N→∞
R̂yy = Ryy . Hence,

lim
N→∞

P̂s = Ps = UsUH
s . (18)

From the decision rule,

lim
N→∞

Pd = lim
N→∞

Pr
{

T |H1 > λ
}

(19a)

= Pr
{

lim
N→∞

T |H1 > λ
}

. (19b)

Utilizing (6) and applying the properties of limit,

lim
N→∞

T |H1 =
ν2

ν1

tr
(

lim
N→∞

P̂s lim
N→∞

R̂yy

)

tr
(

(INRW − lim
N→∞

P̂s) lim
N→∞

R̂yy

) (20a)

=
ν2

ν1

tr
(

PsRyy

)

tr
(

(INRW − Ps)Ryy

) . (20b)

Expressing Ryy via infinite summation of products,

lim
N→∞

T |H1 = lim
N→∞

ν2

ν1

∑N

m=1 ỹH
mPsỹm

∑N

m=1 ỹH
m

(

INRW − Ps

)

ỹm

, (21)

where ỹm = Hsm + zm.
Meanwhile, Ps and

(

INRW − Ps

)

perfectly project toward
the primary signal and noise subspaces, respectively. Accord-
ingly, lim

N→∞
T |H1 ∼ F ′

ν1,ν2
(λH1) for λH1 being the NCP

defined as

λH1 = lim
N→∞

2

σ2

N
∑

m=1

(

∣

∣

∣

∣PsHsm

∣

∣

∣

∣

2
=

∣

∣

∣

∣Hsm

∣

∣

∣

∣

2
)

. (22)

Thus,

lim
N→∞

Pd = Pr
{

lim
N→∞

T |H1 > λ
}

(23a)

= 1 − Pr
{

lim
N→∞

T |H1 ≤ λ
}

(23b)

= 1 − F ′(λ; ν1, ν2|λH1). (23c)

To further characterize the asymptotic Pd, we simplify (21).
Substituting (16) and (18) into (20b) results in

lim
N→∞

T |H1 =
ν2tr

(

UsUH
s [Us Un]ΣV H

)

ν1tr
(

(INRW − UsUH
s )[Us Un]ΣV H

) . (24)

Recalling that UsUH
s Us = Us and UH

s Un = 0r×(NRW −r),
(24) simplifies to

lim
N→∞

T |H1 =
ν2

ν1

tr([Us 0NRW ×(NRW −r)]ΣV H)

tr
(

[0NRW ×r Un]ΣV H
) (25a)

=
ν2

ν1

tr
(

UsΣsV H
s

)

tr
(

UnΣnV H
n

) (25b)

(b)
=

ν2

ν1

E
{

tr
(

HsmsH
mHH

)}

tr
(

σ2INRW

) , (25c)

where (b) follows from (17a) and (17b).
Expressing expectation via the average of infinite summa-

tion of products gives

lim
N→∞

T |H1 =
NRW − r

r
γ̄∞

snr, (26)

where γ̄∞
snr = lim

N→∞

1

N

N
∑

m=1

∣

∣

∣

∣Hsm

∣

∣

∣

∣

2

NRWσ2
is the average SNR

defined over an infinite duration. Hence,

lim
N→∞

Pd = Pr{ lim
N→∞

T |H1 > λ} = Pr

{

NRW − r

r
γ̄∞

snr > λ

}

.

(27)
Therefore, whenever λ > NRW −r

r
γ̄∞

snr, lim
N→∞

Pd = 0.

APPENDIX B
PROOF OF COROLLARY 1

By definition,

lim
N→∞

Pf = lim
N→∞

Pr
{

T |H0 > λ
}

(28a)

= Pr
{

lim
N→∞

T |H0 > λ
}

= 1 − Pr
{

lim
N→∞

T |H0 ≤ λ
}

.

(28b)

From (2), T |H0 = T |H1

∣

∣{

sm

}

N

m=1
=0

. Thus,

lim
N→∞

T |H0 = lim
N→∞

T |H1

∣

∣{

sm

}

N

m=1
=0

. (29)

Using (21) in (29) results in

lim
N→∞

T |H0 = lim
N→∞

ν2

ν1

F1|H0

F2|H0
, (30)

where F1|H0 =
∑N

m=1 zH
mPszm and F2|H0 =

∑N

m=1 zH
m(INRW − Ps)zm. Accordingly, lim

N→∞
T |H0 ∼

Fν1,ν2
and hence

lim
N→∞

Pf = 1 − F (λ; ν1, ν2). (31)

To characterize Pf further, we deploy (26) in (29). Doing
so results in

lim
N→∞

T |H0 = 0. (32)

Using (32) in (28a), lim
N→∞

Pf = Pr
{

lim
N→∞

T |H0 > λ
}

=

Pr
{

0 > λ
}

. If λ > 0, thus, lim
N→∞

Pf = 0.
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