Validation and Performance Evaluation of Two Different Inertial Navigation System Design Approaches

Di Li and René Jr. Landry
Ecole de Technologie Supérieure, University du Quebec, Montreal, Canada

Abstract

This study is to implement and evaluate two different INS design approaches. Specifically for the classic two-speed digital INS design, the discrete INS models, the high/low speed digital integration algorithms, coning/sculling/scrolling compensations for the low speed calculation in attitude/velocity/high precision positioning determination are implemented in a C programming environment. For the simplified INS design, the single high-speed INS algorithm free of coning/sculling/scrolling compensations is investigated. Moreover by utilising Matlab Simulink’s capability to solve the continuous-mode differential equations, instead of using the discrete INS models, the continuous INS models are directly employed in the simplified INS design. The performances of the two developed INS designs are validated and evaluated inside an integrated GPS/INS solutions based on a practical loosely-coupled Kalman filter. Real-time IMU raw measurements logged from the tactic-grade Ring Laser Gyros (RLG)/accelerometers and GPS solutions corresponding to the road testing trajectory is utilised in the validation and evaluation.

Design Methods

• C programming-based stand-alone INS saves 90% of the processing time
• Real-time Honeywell IMU Data Validation
• Continuous INS Algorithm (Simulink Based)
• Real-time Honeywell IMU Data Validation
• Integrated Kalman Filter Design

Coordinates Definition

• System Validation and Experimental Results

Validation and Performance Evaluation of Two Different INS Designs

Research Outlines

• Digital INS Algorithm (C Programming Based)

Conclusion

- Stand-alone INS solutions from C and Simulink approaches are validated
- Both of the approaches reach the same level of precision
- C programming-based stand-alone INS saves 90% of the processing time
- Integrated INS/GPS delivers the improved solutions by estimate/compensate the raw IMU noises

This research is supported by a GEDEX™ and NSERC (Natural Sciences and Engineering Research Council of Canada) Research Project.