Universal Software Defined Avionic Receiver (SDAR) for Robust and Resilient Positioning, Navigation and Timing (PNT)

The main objective of this research program is to investigate fusion architecture and new methods for developing a universal Software-Defined Avionic Receiver (SDAR) with robust and resilient positioning, navigation, and timing (PNT) performance, especially in Global Navigation Satellite System (GNSS)-challenged environments and in different airspace classification. The universal receiver will use specific Signals of Opportunity (SoOP) to cover the modernized avionics standard and the future programs related to aircraft and unmanned systems avionics development, which is a new and challenging problem. Selected SoOP will be obtained from not only mature infrastructure such as actual avionics (DME, TMS, ADS-B), television, or cellular network, but also from promising aeronautical pseudolites and other communication systems such as Iridium Next. To enable such new capabilities, the first initiative will focus on proposing a novel architecture for acquiring and tracking both GNSS and selected SoOP signals with new associated metrics. These signals will be treated in a concise, synchronized and standardized avionics framework. The second axis is on advanced digital signal processing algorithms and data fusion methods to extract useful information from SoOP to maintain precise PNT in diverse conditions. Based on SoOP identification and classification algorithms from multi-band sources, novel learning methods and models will be investigated in order to integrate these signals into global avionics software architecture with extended use in different applications such as local based services. As a validation process of the proposed SDAR, the architecture/algorithms will be studied, developed, implemented, and analyzed first in simulation using real recorded RF signals from the proof-of-concept laboratory receiver. Moreover, the research work and outcomes will be tested and validated in a real environment using the developed real-time prototype. The developed universal SDAR investigated by this research will strongly improve the current GNSS receivers and increase their capabilities, while keeping low size, weight, power, and cost (SWaP-C), which results in an effective, optimal, economical and more secure solution. This program will contribute substantially to the science of GNSS and avionic/navigation receiver design, Integrity Monitoring for Safety-of-Life applications and will directly be profitable in numerous fields, such as general aviation, location-based applications and indoor localization. Unmanned systems such as Vertical Take-Off and Landing (VTOL) vehicles in urban environment will also strongly benefit from the research program outcome. This research is intended to be applicable in future avionic systems, especially with the new generation of Integrated Modular Avionics (IMA). This approach will not only ensure compatibility, but also shall improve safety and secured Communication, Navigation and Surveillance (CNS) systems.


René Jr Landry

Beginning date:

1 May 2019

Project duration :

5 years

Partners :